   Chapter 0.8, Problem 38E

Chapter
Section
Textbook Problem

Let a = log 2 , b = log 3 , and c = log 7 . In Exercises 29–46, use the logarithm identities to express the given quantity in terms of a , b , and c . log ( 2 9 )

To determine

To calculate: The given quantity, log29 in term of a, b and c.

Explanation

Given information:

The given value of a, b and c is,

a=log2, b=log3 and c=log7

Formula used:

The logarithmic identity,

loga(mn)=logamlogan

Here, a, m and n are real number.

Calculation:

Consider the quantity, log29

Now apply the logarithmic identity, loga(mn)=log

Still sussing out bartleby?

Check out a sample textbook solution.

See a sample solution

The Solution to Your Study Problems

Bartleby provides explanations to thousands of textbook problems written by our experts, many with advanced degrees!

Get Started

Evaluate the definite integrals in Problems 1-32.

Mathematical Applications for the Management, Life, and Social Sciences

In Exercises 17 to 22, factor completely. 30x2-35+10

Elementary Geometry For College Students, 7e

Calculate y'. 41. y=x+1(2x)5(x+3)7

Single Variable Calculus: Early Transcendentals

True or False: .

Study Guide for Stewart's Single Variable Calculus: Early Transcendentals, 8th

True or False: converges mean exists.

Study Guide for Stewart's Multivariable Calculus, 8th

Given: m1=72,mDC=34 Find: a)mABb)m2

Elementary Geometry for College Students 