Package: Loose Leaf For Fluid Mechanics With 1 Semester Connect Access Card
Package: Loose Leaf For Fluid Mechanics With 1 Semester Connect Access Card
8th Edition
ISBN: 9781259638848
Author: White
Publisher: MCG
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Chapter 1, Problem 1.10CP

A popular gravity-driven instrument is the Cannon-Ubbelohde viscometer, shown in Fig. C1.10. The test liquid is drawn up above the bulb on the right side and allowed to drain by gravity through the capillary tube below the bulb. The time t for the meniscus to pass from upper to lower timing marks is recorded. The kinematic viscosity is computed by the simple formula: v = Ct where C is a calibration constant. For v in the range of 10U-50U mm2/s, the recommended constant is C = 0.50 mm2/s2, with an accuracy less than 0.5 percent.

(a) What liquids from Table A.3 arc in this viscosity range? (b) Is the calibration formula dimensionally consistent? (c) What system properties might the constant C depend upon? (d) What problem in this chapter hints at a formula for estimating the viscosity?

Chapter 1, Problem 1.10CP, A popular gravity-driven instrument is the Cannon-Ubbelohde viscometer, shown in Fig. C1.10. The

Blurred answer
Students have asked these similar questions
In a falling-ball viscometer, a steel ball 1.6 mm in diameter is allowed to fall freely in a heavy fuel oil having a specific gravity of 0.95. Steel weighs 79 kN/m3. If the ball is observed to fall 250 mm in 10.5 s, calculate the viscosity of the oil.
In the gap between the two plates, the lubricant flows in one direction (x) by the pressure gradient. Lubricants are incompressible Newtonian fluids, flows are laminates, and terminal effects are ignored. Find the maximum flow rate [m/s] when the pressure difference (△P/L) per unit length is 25000 Pa/m.Data: clearance between plates (B) = 6 mm, lubricant viscosity (μ) = 25 cP (1cP = 10-3 Pa·s), lubricant density (=) = 0.88 g/cm3
In the gap between the two plates, the lubricant flows in one direction (x) by the pressure gradient. Lubricants are incompressible Newtonian fluids, flows are laminates, and terminal effects are ignored. Find the maximum flow rate [m/s] when the pressure difference (△P/L) per unit length is 25000 Pa/m.Data: clearance between plates (B) = 6 mm, lubricant viscosity (μ) = 25 cP (1cP = 10-3 Pa·s), lubricant density (=) = 0.88 g/cm3 Please.. explain more easy

Chapter 1 Solutions

Package: Loose Leaf For Fluid Mechanics With 1 Semester Connect Access Card

Ch. 1 - P1.11 In English Engineering units, the specific...Ch. 1 - For low-speed (laminar) steady flow through a...Ch. 1 - The efficiency ? of a pump is defined as the...Ch. 1 - Figure P1.14 shows the flow of water over a dam....Ch. 1 - The height H that fluid rises in a liquid...Ch. 1 - Algebraic equations such as Bernoulli's relation,...Ch. 1 - The Hazen-Williams hydraulics formula for volume...Ch. 1 - For small particles at low velocities, the first...Ch. 1 - In his study of the circular hydraulic jump formed...Ch. 1 - Books on porous media and atomization claim that...Ch. 1 - Aeronautical engineers measure the pitching moment...Ch. 1 - Prob. 1.22PCh. 1 - During World War II, Sir Geoffrey Taylor, a...Ch. 1 - Air, assumed to be an ideal gas with k = 1.40,...Ch. 1 - On a summer day in Narragansett, Rhode Island, the...Ch. 1 - When we in the United States say a car's tire is...Ch. 1 - Prob. 1.27PCh. 1 - Wet atmospheric air at 100 percent relative...Ch. 1 - Prob. 1.29PCh. 1 - P1.30 Repeat Prob. 1.29 if the tank is filled with...Ch. 1 - Prob. 1.31PCh. 1 - Prob. 1.32PCh. 1 - A tank contai as 9 kg of CO2at 20°C and 2.0 MPa....Ch. 1 - Consider steam at the following state near the...Ch. 1 - In Table A.4, most common gases (air, nitrogen,...Ch. 1 - Prob. 1.36PCh. 1 - A near-ideal gas has a molecular weight of 44 and...Ch. 1 - In Fig. 1.7, if the fluid is glycerin at 20°C and...Ch. 1 - Prob. 1.39PCh. 1 - Glycerin at 20°C fills the space between a hollow...Ch. 1 - An aluminum cylinder weighing 30 N, 6 cm in...Ch. 1 - Prob. 1.42PCh. 1 - Prob. 1.43PCh. 1 - One type of viscometer is simply a long capillary...Ch. 1 - A block of weight W slides down an inclined plane...Ch. 1 - A simple and popular model for two nonnewtonian...Ch. 1 - Data for the apparent viscosity of average human...Ch. 1 - A thin plate is separated from two fixed plates by...Ch. 1 - An amazing number of commercial and laboratory...Ch. 1 - Prob. 1.50PCh. 1 - Prob. 1.51PCh. 1 - The belt in Fig. P1.52 moves at a steady velocity...Ch. 1 - A solid tune of angle 2 , base r0, and density...Ch. 1 - A disk of radius R rotates at an angular velocity ...Ch. 1 - A block of weight W is being pulled over a table...Ch. 1 - The device in Fig. P1.56 is called a cone-plate...Ch. 1 - Extend the steady flow between a fixed lower plate...Ch. 1 - The laminar pipe flow example of Prob. 1.12 can be...Ch. 1 - A solid cylinder of diameter D, length L, and...Ch. 1 - Prob. 1.60PCh. 1 - Prob. 1.61PCh. 1 - P1.62 The hydrogen bubbles that produced the...Ch. 1 - Derive Eq. (1.33) by making a force balance on the...Ch. 1 - Pressure in a water container can be measured by...Ch. 1 - The system in Fig. P1.65 is used to calculate the...Ch. 1 - Prob. 1.66PCh. 1 - Prob. 1.67PCh. 1 - Prob. 1.68PCh. 1 - A solid cylindrical needle of diameter d, length...Ch. 1 - Derive an expression for the capillary height...Ch. 1 - A soap bubble of diameter D1coalesces with another...Ch. 1 - Early mountaineers boiled water to estimate their...Ch. 1 - A small submersible moves al velocity V, in fresh...Ch. 1 - Oil, with a vapor pressure of 20 kPa, is delivered...Ch. 1 - An airplane flies at 555 mi/h. At what altitude in...Ch. 1 - Prob. 1.76PCh. 1 - Prob. 1.77PCh. 1 - P1.78 Sir Isaac Newton measured the speed of sound...Ch. 1 - Prob. 1.79PCh. 1 - Prob. 1.80PCh. 1 - Use Eq. (1.39) to find and sketch the streamlines...Ch. 1 - P1.82 A velocity field is given by u = V cos, v =...Ch. 1 - Prob. 1.83PCh. 1 - In the early 1900s, the British chemist Sir Cyril...Ch. 1 - Prob. 1.85PCh. 1 - A right circular cylinder volume v is to be...Ch. 1 - The absolute viscosity of a fluid is primarily a...Ch. 1 - Prob. 1.2FEEPCh. 1 - Helium has a molecular weight of 4.003. What is...Ch. 1 - An oil has a kinematic viscosity of 1.25 E-4 m2/s...Ch. 1 - Prob. 1.5FEEPCh. 1 - Prob. 1.6FEEPCh. 1 - FE1.7 Two parallel plates, one moving at 4 m/s...Ch. 1 - Prob. 1.8FEEPCh. 1 - A certain water flow at 20°C has a critical...Ch. 1 - Prob. 1.10FEEPCh. 1 - Sometimes we can develop equations and solve...Ch. 1 - When a person ice skates, the surface of the ice...Ch. 1 - Two thin flat plates, tilted at an angle a, are...Ch. 1 - Oil of viscosity and density drains steadily...Ch. 1 - Prob. 1.5CPCh. 1 - Prob. 1.6CPCh. 1 - Prob. 1.7CPCh. 1 - C1.8 A mechanical device that uses the rotating...Ch. 1 - Prob. 1.9CPCh. 1 - A popular gravity-driven instrument is the...Ch. 1 - Mott [Ref. 49, p. 38] discusses a simple...Ch. 1 - A solid aluminum disk (SG = 2.7) is 2 in in...
Knowledge Booster
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • Liquid is pushed through the narrow gap formed between two glass plates. Thedistance between the plates is h and the width of the plate is b . Assuming that theflow is laminar, two-dimensional and fully developed, derive a formula for thelongitudinal pressure gradient in terms of the volumetric flow rate, Q, the fluid viscosityand the distances b and h .In an example the above conditions apply with b = 0.10 m and h = 0.00076 m. Theliquid is glycerine that has an absolute viscosity of 0.96 N s/m². A pressure differenceof 192 kN/m² is applied over a distance of 0.24 m. Calculate the maximum velocity thatoccurs in the centre plane of the gap and the mean velocity.Answer 0.06 m/s
    A concentric cylinder viscometer is driven by a falling mass M connected by a cord and pulley to the inner cylinder. Annular gap of width a and height H has been filled with liquid to be tested. The speed of the falling mass is Vm. Develop an algebraic expression for the viscosity of the liquid. Evaluate the viscosity of the liquid using M= 0.1 Kg, R=50mm, H=80 mm, r=25mm, a=0.20mm and Vm = 94
    The company has opted to purchase a new viscometer for you, as such, you are required by topropose two options for new viscometers. Select two viscometers and explain their operation andconstraints. (P3)b. (P4) Given that you achieved the following results with a U-Tube viscometer:Temperature/ C Time / s40 5760 4180 29100 16Calculate the viscosity at each temperature if the calibration constant is 0.511.d. (M2) Illustrate the results on a graph of temperature vs viscosity and give a briefing on what yourresults indicate, identifying the response of the oil to temperature and explaining anydiscrepancies that may have occurred during the testing.e. (D2) From your testing you discovered that you had a Newtonian and Non-Newtonian sample.Explain to your team what the two terms mean with respect to temperature and shear force onboth samples, giving at least one example of each type of fluid.
    • SEE MORE QUESTIONS
    Recommended textbooks for you
  • Elements Of Electromagnetics
    Mechanical Engineering
    ISBN:9780190698614
    Author:Sadiku, Matthew N. O.
    Publisher:Oxford University Press
    Mechanics of Materials (10th Edition)
    Mechanical Engineering
    ISBN:9780134319650
    Author:Russell C. Hibbeler
    Publisher:PEARSON
    Thermodynamics: An Engineering Approach
    Mechanical Engineering
    ISBN:9781259822674
    Author:Yunus A. Cengel Dr., Michael A. Boles
    Publisher:McGraw-Hill Education
  • Control Systems Engineering
    Mechanical Engineering
    ISBN:9781118170519
    Author:Norman S. Nise
    Publisher:WILEY
    Mechanics of Materials (MindTap Course List)
    Mechanical Engineering
    ISBN:9781337093347
    Author:Barry J. Goodno, James M. Gere
    Publisher:Cengage Learning
    Engineering Mechanics: Statics
    Mechanical Engineering
    ISBN:9781118807330
    Author:James L. Meriam, L. G. Kraige, J. N. Bolton
    Publisher:WILEY
  • Elements Of Electromagnetics
    Mechanical Engineering
    ISBN:9780190698614
    Author:Sadiku, Matthew N. O.
    Publisher:Oxford University Press
    Mechanics of Materials (10th Edition)
    Mechanical Engineering
    ISBN:9780134319650
    Author:Russell C. Hibbeler
    Publisher:PEARSON
    Thermodynamics: An Engineering Approach
    Mechanical Engineering
    ISBN:9781259822674
    Author:Yunus A. Cengel Dr., Michael A. Boles
    Publisher:McGraw-Hill Education
    Control Systems Engineering
    Mechanical Engineering
    ISBN:9781118170519
    Author:Norman S. Nise
    Publisher:WILEY
    Mechanics of Materials (MindTap Course List)
    Mechanical Engineering
    ISBN:9781337093347
    Author:Barry J. Goodno, James M. Gere
    Publisher:Cengage Learning
    Engineering Mechanics: Statics
    Mechanical Engineering
    ISBN:9781118807330
    Author:James L. Meriam, L. G. Kraige, J. N. Bolton
    Publisher:WILEY
    Principles of Lubrication | Automobile Engineering; Author: Magic Marks;https://www.youtube.com/watch?v=MGbbSxZTdCQ;License: Standard Youtube License