Organic And Biological Chemistry
Organic And Biological Chemistry
7th Edition
ISBN: 9781305081079
Author: STOKER, H. Stephen (howard Stephen)
Publisher: Cengage Learning,
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 1, Problem 1.134EP

(a)

Interpretation Introduction

Interpretation:

Structural formula for all the possible monobrominated products obtained from halogenation of propane has to be written.

Concept Introduction:

Alkanes are linear chain saturated hydrocarbons.  The reactivity of alkanes are very less.  They can be heated for a very long time in strong acids and bases without any reaction.  Even strong reducing and strong oxidizing agents have less effect on alkanes.

Alkanes are not completely inert.  Two important reactions that alkanes undergo are combustion and halogenation.

Combustion reaction is the one where reaction occurs between substance and oxygen which proceeds with evolution of light and heat.  Due to the heat produced when alkanes are made to undergo combustion with oxygen, it is used as fuel.

Halogenation is a chemical reaction between a substance and halogen.  The product of halogenation reaction is that one or more halogens are incorporated into molecules of the substance.  Halogenation of hydrocarbon gives hydrocarbon derivatives as product where halogen atoms are substituted instead of hydrogen atoms.

Halogenation reaction of alkane is an example of substitution reaction.  This is a reaction where a part of reacting molecule replaces an atom or group of atoms in hydrocarbon or hydrocarbon derivative.

Cycloalkanes are also similar to those of alkanes.  Cycloalkanes also undergo combustion and halogenation reaction.

(a)

Expert Solution
Check Mark

Answer to Problem 1.134EP

The monobrominated products of propane are,

Organic And Biological Chemistry, Chapter 1, Problem 1.134EP , additional homework tip  1

Explanation of Solution

Halogenation is a chemical reaction between a substance and halogen.  The product of halogenation reaction is that one or more halogens are incorporated into molecules of the substance.  Halogenation of hydrocarbon gives hydrocarbon derivatives as product where halogen atoms are substituted instead of hydrogen atoms.

Halogenation reaction of alkane is an example of substitution reaction.  This is a reaction where a part of reacting molecule replaces an atom or group of atoms in hydrocarbon or hydrocarbon derivative.

General reaction for halogenation of alkane can be given as shown below,

    RH + X2 halogenation RX + HXalkane halogen alkyl halide hydrogen halide

The halogenation reaction takes place giving a mixture of products where the hydrogen atoms present in the alkane are substituted randomly.

Given alkane is propane.  Two kinds of hydrogen is present in propane.  Therefore, bromination of propane will lead to two monobrominated product as shown below,

Organic And Biological Chemistry, Chapter 1, Problem 1.134EP , additional homework tip  2

Conclusion

The structural formula for monobrominated product of propane was drawn.

(b)

Interpretation Introduction

Interpretation:

Structural formula for all the possible monobrominated products obtained from halogenation of pentane has to be written.

Concept Introduction:

Alkanes are linear chain saturated hydrocarbons.  The reactivity of alkanes are very less.  They can be heated for a very long time in strong acids and bases without any reaction.  Even strong reducing and strong oxidizing agents have less effect on alkanes.

Alkanes are not completely inert.  Two important reactions that alkanes undergo are combustion and halogenation.

Combustion reaction is the one where reaction occurs between substance and oxygen which proceeds with evolution of light and heat.  Due to the heat produced when alkanes are made to undergo combustion with oxygen, it is used as fuel.

Halogenation is a chemical reaction between a substance and halogen.  The product of halogenation reaction is that one or more halogens are incorporated into molecules of the substance.  Halogenation of hydrocarbon gives hydrocarbon derivatives as product where halogen atoms are substituted instead of hydrogen atoms.

Halogenation reaction of alkane is an example of substitution reaction.  This is a reaction where a part of reacting molecule replaces an atom or group of atoms in hydrocarbon or hydrocarbon derivative.

Cycloalkanes are also similar to those of alkanes.  Cycloalkanes also undergo combustion and halogenation reaction.

(b)

Expert Solution
Check Mark

Answer to Problem 1.134EP

The monobrominated products of pentane are,

Organic And Biological Chemistry, Chapter 1, Problem 1.134EP , additional homework tip  3

Explanation of Solution

Halogenation is a chemical reaction between a substance and halogen.  The product of halogenation reaction is that one or more halogens are incorporated into molecules of the substance.  Halogenation of hydrocarbon gives hydrocarbon derivatives as product where halogen atoms are substituted instead of hydrogen atoms.

Halogenation reaction of alkane is an example of substitution reaction.  This is a reaction where a part of reacting molecule replaces an atom or group of atoms in hydrocarbon or hydrocarbon derivative.

General reaction for halogenation of alkane can be given as shown below,

    RH + X2 halogenation RX + HXalkane halogen alkyl halide hydrogen halide

The halogenation reaction takes place giving a mixture of products where the hydrogen atoms present in the alkane are substituted randomly.

Given alkane is pentane.  Three kinds of hydrogen atoms are present in pentane.  Therefore, bromination of pentane will lead to three monobrominated product as shown below,

Organic And Biological Chemistry, Chapter 1, Problem 1.134EP , additional homework tip  4

Conclusion

The structural formula for monobrominated products of pentane was drawn.

(c)

Interpretation Introduction

Interpretation:

Structural formula for all the possible monobrominated products obtained from halogenation of 2-methylbutane has to be written.

Concept Introduction:

Alkanes are linear chain saturated hydrocarbons.  The reactivity of alkanes are very less.  They can be heated for a very long time in strong acids and bases without any reaction.  Even strong reducing and strong oxidizing agents have less effect on alkanes.

Alkanes are not completely inert.  Two important reactions that alkanes undergo are combustion and halogenation.

Combustion reaction is the one where reaction occurs between substance and oxygen which proceeds with evolution of light and heat.  Due to the heat produced when alkanes are made to undergo combustion with oxygen, it is used as fuel.

Halogenation is a chemical reaction between a substance and halogen.  The product of halogenation reaction is that one or more halogens are incorporated into molecules of the substance.  Halogenation of hydrocarbon gives hydrocarbon derivatives as product where halogen atoms are substituted instead of hydrogen atoms.

Halogenation reaction of alkane is an example of substitution reaction.  This is a reaction where a part of reacting molecule replaces an atom or group of atoms in hydrocarbon or hydrocarbon derivative.

Cycloalkanes are also similar to those of alkanes.  Cycloalkanes also undergo combustion and halogenation reaction.

(c)

Expert Solution
Check Mark

Answer to Problem 1.134EP

The monobrominated products of 2-methylbutane are,

Organic And Biological Chemistry, Chapter 1, Problem 1.134EP , additional homework tip  5

Explanation of Solution

Halogenation is a chemical reaction between a substance and halogen.  The product of halogenation reaction is that one or more halogens are incorporated into molecules of the substance.  Halogenation of hydrocarbon gives hydrocarbon derivatives as product where halogen atoms are substituted instead of hydrogen atoms.

Halogenation reaction of alkane is an example of substitution reaction.  This is a reaction where a part of reacting molecule replaces an atom or group of atoms in hydrocarbon or hydrocarbon derivative.

General reaction for halogenation of alkane can be given as shown below,

    RH + X2 halogenation RX + HXalkane halogen alkyl halide hydrogen halide

The halogenation reaction takes place giving a mixture of products where the hydrogen atoms present in the alkane are substituted randomly.

Given alkane is 2-methylbutane.  Four kinds of hydrogen atoms are present in 2-methylbutane.  Therefore, bromination of 2-methylbutane will lead to four monobrominated product as shown below,

Organic And Biological Chemistry, Chapter 1, Problem 1.134EP , additional homework tip  6

Conclusion

The structural formula for monobrominated products of 2-methylbutane was drawn.

(d)

Interpretation Introduction

Interpretation:

Structural formula for all the possible monobrominated products obtained from halogenation of cyclohexane has to be written.

Concept Introduction:

Alkanes are linear chain saturated hydrocarbons.  The reactivity of alkanes are very less.  They can be heated for a very long time in strong acids and bases without any reaction.  Even strong reducing and strong oxidizing agents have less effect on alkanes.

Alkanes are not completely inert.  Two important reactions that alkanes undergo are combustion and halogenation.

Combustion reaction is the one where reaction occurs between substance and oxygen which proceeds with evolution of light and heat.  Due to the heat produced when alkanes are made to undergo combustion with oxygen, it is used as fuel.

Halogenation is a chemical reaction between a substance and halogen.  The product of halogenation reaction is that one or more halogens are incorporated into molecules of the substance.  Halogenation of hydrocarbon gives hydrocarbon derivatives as product where halogen atoms are substituted instead of hydrogen atoms.

Halogenation reaction of alkane is an example of substitution reaction.  This is a reaction where a part of reacting molecule replaces an atom or group of atoms in hydrocarbon or hydrocarbon derivative.

Cycloalkanes are also similar to those of alkanes.  Cycloalkanes also undergo combustion and halogenation reaction.

(d)

Expert Solution
Check Mark

Answer to Problem 1.134EP

The monobrominated products of cyclohexane is,

Organic And Biological Chemistry, Chapter 1, Problem 1.134EP , additional homework tip  7

Explanation of Solution

Halogenation is a chemical reaction between a substance and halogen.  The product of halogenation reaction is that one or more halogens are incorporated into molecules of the substance.  Halogenation of hydrocarbon gives hydrocarbon derivatives as product where halogen atoms are substituted instead of hydrogen atoms.

Halogenation reaction of alkane is an example of substitution reaction.  This is a reaction where a part of reacting molecule replaces an atom or group of atoms in hydrocarbon or hydrocarbon derivative.

General reaction for halogenation of alkane can be given as shown below,

    RH + X2 halogenation RX + HXalkane halogen alkyl halide hydrogen halide

The halogenation reaction takes place giving a mixture of products where the hydrogen atoms present in the alkane are substituted randomly.

Given cycloalkane is cyclohexane.  Only one kind of hydrogen is present in cyclohexane.  Therefore, bromination of cyclohexane will lead to the same monobrominated product as shown below,

Organic And Biological Chemistry, Chapter 1, Problem 1.134EP , additional homework tip  8

Conclusion

The structural formula for monobrominated product of cyclohexane was drawn.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!

Chapter 1 Solutions

Organic And Biological Chemistry

Ch. 1.5 - Prob. 2QQCh. 1.5 - Prob. 3QQCh. 1.6 - Prob. 1QQCh. 1.6 - Prob. 2QQCh. 1.6 - Prob. 3QQCh. 1.6 - Prob. 4QQCh. 1.7 - Prob. 1QQCh. 1.7 - Prob. 2QQCh. 1.8 - Prob. 1QQCh. 1.8 - Prob. 2QQCh. 1.8 - Prob. 3QQCh. 1.8 - Prob. 4QQCh. 1.8 - Prob. 5QQCh. 1.8 - Prob. 6QQCh. 1.8 - Prob. 7QQCh. 1.9 - Prob. 1QQCh. 1.9 - Prob. 2QQCh. 1.10 - Prob. 1QQCh. 1.10 - Prob. 2QQCh. 1.11 - Prob. 1QQCh. 1.11 - Prob. 2QQCh. 1.11 - Prob. 3QQCh. 1.12 - Prob. 1QQCh. 1.12 - Prob. 2QQCh. 1.12 - Prob. 3QQCh. 1.13 - Prob. 1QQCh. 1.13 - Prob. 2QQCh. 1.13 - Prob. 3QQCh. 1.14 - Prob. 1QQCh. 1.14 - Prob. 2QQCh. 1.14 - Prob. 3QQCh. 1.15 - Prob. 1QQCh. 1.15 - Prob. 2QQCh. 1.16 - Prob. 1QQCh. 1.16 - Prob. 2QQCh. 1.16 - Prob. 3QQCh. 1.17 - Prob. 1QQCh. 1.17 - Prob. 2QQCh. 1.17 - Prob. 3QQCh. 1.17 - Prob. 4QQCh. 1.18 - Prob. 1QQCh. 1.18 - Prob. 2QQCh. 1.18 - Prob. 3QQCh. 1.18 - Prob. 4QQCh. 1 - Prob. 1.1EPCh. 1 - Prob. 1.2EPCh. 1 - Prob. 1.3EPCh. 1 - Prob. 1.4EPCh. 1 - Indicate whether each of the following situations...Ch. 1 - Indicate whether each of the following situations...Ch. 1 - Prob. 1.7EPCh. 1 - Prob. 1.8EPCh. 1 - What is the difference between a saturated...Ch. 1 - What structural feature is present in an...Ch. 1 - Prob. 1.11EPCh. 1 - Prob. 1.12EPCh. 1 - Prob. 1.13EPCh. 1 - Prob. 1.14EPCh. 1 - Prob. 1.15EPCh. 1 - Prob. 1.16EPCh. 1 - Convert the expanded structural formulas in...Ch. 1 - Prob. 1.18EPCh. 1 - Prob. 1.19EPCh. 1 - Prob. 1.20EPCh. 1 - Prob. 1.21EPCh. 1 - Prob. 1.22EPCh. 1 - Prob. 1.23EPCh. 1 - Prob. 1.24EPCh. 1 - Prob. 1.25EPCh. 1 - Prob. 1.26EPCh. 1 - Indicate whether each of the following would be...Ch. 1 - Indicate whether each of the following would be...Ch. 1 - Prob. 1.29EPCh. 1 - Explain why two different straight-chain alkanes...Ch. 1 - With the help of Table 12-1, indicate how many...Ch. 1 - Prob. 1.32EPCh. 1 - How many of the numerous eight-carbon alkane...Ch. 1 - How many of the numerous seven-carbon alkane...Ch. 1 - For each of the following pairs of structures,...Ch. 1 - For each of the following pairs of structures,...Ch. 1 - Convert each of the following linear condensed...Ch. 1 - Prob. 1.38EPCh. 1 - Prob. 1.39EPCh. 1 - Prob. 1.40EPCh. 1 - Prob. 1.41EPCh. 1 - Prob. 1.42EPCh. 1 - Prob. 1.43EPCh. 1 - Prob. 1.44EPCh. 1 - Prob. 1.45EPCh. 1 - Prob. 1.46EPCh. 1 - Prob. 1.47EPCh. 1 - Prob. 1.48EPCh. 1 - Prob. 1.49EPCh. 1 - Prob. 1.50EPCh. 1 - Prob. 1.51EPCh. 1 - Prob. 1.52EPCh. 1 - Draw a condensed structural formula for each of...Ch. 1 - Draw a condensed structural formula for each of...Ch. 1 - Prob. 1.55EPCh. 1 - For each of the alkanes in Problem 12-54,...Ch. 1 - Explain why the name given for each of the...Ch. 1 - Prob. 1.58EPCh. 1 - Indicate whether or not the two alkanes in each of...Ch. 1 - Prob. 1.60EPCh. 1 - How many of the 18 C8 alkane constitutional...Ch. 1 - How many of the nine C7 alkane constitutional...Ch. 1 - Prob. 1.63EPCh. 1 - Prob. 1.64EPCh. 1 - Prob. 1.65EPCh. 1 - Prob. 1.66EPCh. 1 - Do the line-angle structural formulas in each of...Ch. 1 - Do the line-angle structural formulas in each of...Ch. 1 - Convert each of the condensed structural formulas...Ch. 1 - Convert each of the condensed structural formulas...Ch. 1 - Assign an IUPAC name to each of the compounds in...Ch. 1 - Prob. 1.72EPCh. 1 - Prob. 1.73EPCh. 1 - Prob. 1.74EPCh. 1 - For each of the alkane structures in Problem...Ch. 1 - For each of the alkane structures in Problem...Ch. 1 - Prob. 1.77EPCh. 1 - Prob. 1.78EPCh. 1 - Prob. 1.79EPCh. 1 - Prob. 1.80EPCh. 1 - Prob. 1.81EPCh. 1 - Prob. 1.82EPCh. 1 - Draw condensed structural formulas for the...Ch. 1 - Draw condensed structural formulas for the...Ch. 1 - To which carbon atoms in a hexane molecule can...Ch. 1 - Prob. 1.86EPCh. 1 - Prob. 1.87EPCh. 1 - Prob. 1.88EPCh. 1 - Give an acceptable alternate name for each of the...Ch. 1 - Prob. 1.90EPCh. 1 - Prob. 1.91EPCh. 1 - Prob. 1.92EPCh. 1 - Prob. 1.93EPCh. 1 - Prob. 1.94EPCh. 1 - What is the molecular formula for each of the...Ch. 1 - Prob. 1.96EPCh. 1 - Prob. 1.97EPCh. 1 - Prob. 1.98EPCh. 1 - Prob. 1.99EPCh. 1 - How many secondary carbon atoms are present in...Ch. 1 - Assign an IUPAC name to each of the following...Ch. 1 - Assign an IUPAC name to each of the following...Ch. 1 - Prob. 1.103EPCh. 1 - Prob. 1.104EPCh. 1 - Prob. 1.105EPCh. 1 - Prob. 1.106EPCh. 1 - What is the molecular formula for each of the...Ch. 1 - Prob. 1.108EPCh. 1 - Prob. 1.109EPCh. 1 - Prob. 1.110EPCh. 1 - Prob. 1.111EPCh. 1 - Prob. 1.112EPCh. 1 - Determine whether cistrans isomerism is possible...Ch. 1 - Prob. 1.114EPCh. 1 - Prob. 1.115EPCh. 1 - Prob. 1.116EPCh. 1 - Prob. 1.117EPCh. 1 - Indicate whether the members of each of the...Ch. 1 - Prob. 1.119EPCh. 1 - Prob. 1.120EPCh. 1 - Prob. 1.121EPCh. 1 - Prob. 1.122EPCh. 1 - Prob. 1.123EPCh. 1 - Which member in each of the following pairs of...Ch. 1 - Prob. 1.125EPCh. 1 - Prob. 1.126EPCh. 1 - Answer the following questions about the...Ch. 1 - Prob. 1.128EPCh. 1 - Prob. 1.129EPCh. 1 - Prob. 1.130EPCh. 1 - Write molecular formulas for all the possible...Ch. 1 - Write molecular formulas for all the possible...Ch. 1 - Prob. 1.133EPCh. 1 - Prob. 1.134EPCh. 1 - Prob. 1.135EPCh. 1 - Assign an IUPAC name to each of the following...Ch. 1 - Prob. 1.137EPCh. 1 - Prob. 1.138EPCh. 1 - Prob. 1.139EPCh. 1 - Prob. 1.140EPCh. 1 - Prob. 1.141EPCh. 1 - Prob. 1.142EPCh. 1 - Prob. 1.143EPCh. 1 - Prob. 1.144EPCh. 1 - Prob. 1.145EPCh. 1 - Prob. 1.146EPCh. 1 - Give the IUPAC names for the eight isomeric...Ch. 1 - Prob. 1.148EP
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Text book image
General, Organic, and Biological Chemistry
Chemistry
ISBN:9781285853918
Author:H. Stephen Stoker
Publisher:Cengage Learning
Text book image
Organic And Biological Chemistry
Chemistry
ISBN:9781305081079
Author:STOKER, H. Stephen (howard Stephen)
Publisher:Cengage Learning,
Text book image
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co
Text book image
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Text book image
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Text book image
Chemistry In Focus
Chemistry
ISBN:9781337399692
Author:Tro, Nivaldo J.
Publisher:Cengage Learning,
Chapter 4 Alkanes and Cycloalkanes Lesson 2; Author: Linda Hanson;https://www.youtube.com/watch?v=AL_CM_Btef4;License: Standard YouTube License, CC-BY
Chapter 4 Alkanes and Cycloalkanes Lesson 1; Author: Linda Hanson;https://www.youtube.com/watch?v=PPIa6EHJMJw;License: Standard Youtube License