Fundamentals of Heat and Mass Transfer
Fundamentals of Heat and Mass Transfer
7th Edition
ISBN: 9780470501979
Author: Frank P. Incropera, David P. DeWitt, Theodore L. Bergman, Adrienne S. Lavine
Publisher: Wiley, John & Sons, Incorporated
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Chapter 1, Problem 1.23P

A transmission case measures W = 0.30 m on a sideand receives a power input of P i = 150 hp from theengine.
Chapter 1, Problem 1.23P, A transmission case measures W=0.30m on a sideand receives a power input of Pi=150hp from theengine.
If the transmission efficiency is η = 0.93 and airflowover the case corresponds to T = 30 ° C and h = 200 W/m 2 K , what is the surface temperature of thetransmission?

Blurred answer
Students have asked these similar questions
Water at 20°C is pumped at a constant rate of 9 m3/h from a large reservoir resting on the floor to the open top of an experimental absorption tower. The point of discharge is 5 m above the floor, and friction losses in the 50-mm pipe from the reservoir to the tower amount to 2.5 J/kg. At what height in the reservoir must the water level be kept if the pump can deliver only 0.1 kW?In this problem, we can assume that the surface of the large reservoir and the absorption tower is at atmospheric pressure, show the complete mechanical energy balance describing the flow system? Take the floor to be at 0 height.
Two half-cylindrical materials with a length of L =1 m, which are of two different materials (A and B) given in the figure below, were covered with a cylindrical material with a length of L=1 m and a radius of r1 = 50 mm. The outer diameter of the half cylinders is r2= 100 mm. The transmission coefficients of each of the semi-cylindrical materials are respectively kA= 2W/mK kB= 0.25W/mK. The fluid with a temperature of h=25W/M2K and T_∞=300K passes over this cylinder. Accordingly (VARIABLES: r1 = 20-50 mm- r2= 70-100 mm)a)Find the conduction and convection resistances by drawing the resistor diagram.b)Find the total amount of heat transfer in the radial direction.c)Find the T2A and T2B temperatures for each of the materials A and B. r1=10 T1=81 r11=22 r12=78 d3=2
Calculate the resistive force acting on the disk, with the error level not less than h^4, according to the pressure distribution on a circular disk of 0.5 m diameter held against the air flow, given in the table below.

Chapter 1 Solutions

Fundamentals of Heat and Mass Transfer

Ch. 1 - The heat flux that is applied to one face of a...Ch. 1 - An inexpensive food and beverage container is...Ch. 1 - What is the thickness required of a masonry wall...Ch. 1 - A wall is made from an inhomogeneous...Ch. 1 - The 5-mm-thick bottom of a 200-mm-diameter panmay...Ch. 1 - A square silicon chip (k=150W/mK) is of width...Ch. 1 - For a boiling process such as shown in Figure 1.5...Ch. 1 - You’ve experienced convection cooling if you’ve...Ch. 1 - Air at 40°C flows over a long, 25-mm-diameter...Ch. 1 - A wall has inner and outer surface temperatures of...Ch. 1 - An electric resistance heater is embedded in a...Ch. 1 - The free convection heat transfer coefficient on a...Ch. 1 - A transmission case measures W=0.30m on a sideand...Ch. 1 - A cartridge electrical heater is shaped as a...Ch. 1 - A common procedure for measuring the velocity of...Ch. 1 - A square isothermal chip is of width w=5mm on...Ch. 1 - The temperature controller for a clothes dryer...Ch. 1 - An overhead 25-m-long, uninsulated industrial...Ch. 1 - Under conditions for which the same room...Ch. 1 - A spherical interplanetary probe of 0.5-m diameter...Ch. 1 - An instrumentation package has a spherical outer...Ch. 1 - Consider the conditions of Problem 1.22. However,...Ch. 1 - If TsTsur in Equation 1.9, the radiation heat...Ch. 1 - A vacuum system, as used ¡n sputtering...Ch. 1 - An electrical resistor is connected to a battery,...Ch. 1 - Pressurized water (pin=10bar,Tin=110C) enters...Ch. 1 - Consider the tube and inlet conditions of Problem...Ch. 1 - An internally reversible refrigerator has a...Ch. 1 - A household refrigerator operates with cold-...Ch. 1 - Chips of width L=15mm on a side are mounted to...Ch. 1 - Consider the transmission case of Problem 1...Ch. 1 - One method for growing thin silicon sheets for...Ch. 1 - Heat is transferred by radiation and convection...Ch. 1 - Radioactive wastes are packed in a long,...Ch. 1 - An aluminum plate 4 mm thick is mounted in a...Ch. 1 - A blood warmer is to be used during the...Ch. 1 - Consider a carton of milk that is refrigerated at...Ch. 1 - Prob. 1.48PCh. 1 - Liquid oxygen, which has a boiling into of 90 K...Ch. 1 - The emissivity of galvanized steel sheet, a...Ch. 1 - Three electric resistance heaters of length...Ch. 1 - A hair dryer may be idealized as a circular duct...Ch. 1 - In one stage of an annealing process, 304...Ch. 1 - Convection ovens operate on the principle of...Ch. 1 - Annealing, an important step ¡n semiconductor...Ch. 1 - In the thermal processing of semiconductor...Ch. 1 - A furnace tor processing semiconductor materials...Ch. 1 - Prob. 1.58PCh. 1 - Consider the wind turbine of Example 1.3. To...Ch. 1 - Consider the conducting rod of Example 1.4...Ch. 1 - A long bus bar (cylindrical rod used for making...Ch. 1 - A 50mm45mm20mm cell phone chargerhas a surface...Ch. 1 - A spherical, stainless steel (AISI 302) canister...Ch. 1 - A freezer compartment is covered with a...Ch. 1 - A vertical slab of Wood’s metal is joined to a...Ch. 1 - A photovoltaic panel of dimension 2m4m isinstalled...Ch. 1 - Following the hot vacuum forming of a...Ch. 1 - Prob. 1.69PCh. 1 - A computer consists of an array of five printed...Ch. 1 - Prob. 1.71PCh. 1 - The roof of a car in a parking lot absorbs a solar...Ch. 1 - Consider the conditions of Problem 1.22,but the...Ch. 1 - Most of the energy we consume as food ¡s converted...Ch. 1 - Prob. 1.75PCh. 1 - The wall of an oven used to cure plastic parts is...Ch. 1 - An experiment to determine the convection...Ch. 1 - A thin electrical heating element provides a...Ch. 1 - A rectangular forced air healing duct is suspended...Ch. 1 - Consider the steam pipe of Example 1.2. The...Ch. 1 - During its manufacture, plate glass at 600°C is...Ch. 1 - The curing press of Example 1.9 involves exposure...Ch. 1 - The diameter and surface emissivity of an...Ch. 1 - Prob. 1.84PCh. 1 - A solar flux of 700W/m2K is incident on a...Ch. 1 - In considering the following problems involving...
Knowledge Booster
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • The drive is by V-belts from an electric motor running at 1500 r.p.m. A compressor, requiring 75000W is to run at about 500 r.p.m. The diameter of the pulley on the compressor shaft must not be greater than 1.2 meter while the centre distance between the pulleys is limited to 1.85 meter. The belt speed should not exceed 1500 m/min. Determine the number of V-belts required to transmit the power if each belt has a cross-sectional area of 3 cm2, density 1100 kg/m3 and an allowable tensile stress of 3 MPa. The groove angle of the pulley is 50°. The coefficient of friction between the belt and the pulley is 0.3. Calculate also the length required of each belt.
    ..... A journal bearing for a pump has the following properties: Diametral clearance ratio = 0.0013 mm Diameter of journal = 90 mm  Length of bearing = 160 mm Speed of journal = 900 rpm Lubricant viscosity = 0.02 kg/m-s Lubricant temperature = 60°C Ambient temperature = 15°C Bearing pressure in pump = 1.2 MPa Heat dissipation coefficient = 1,250 W/m2-°C Determine the amount of cooling (Qg-Qd) required in W.
    Over the outside part of the room window, the wind is blowing with a speed of 10 m/sec. Due to this wind motion, the temperature on the outer surface of the window is 5 degrees lower than the room temperature. Determine the convective heat flux if the wind temperature is 10 C with a heat transfer coefficient of 10 W/(mK). Accept the temperature inside the room as 25 C.       A) 200 W       B) 100 W       C) 200 W/(m^2)       D) 100 W/(m^2)       E) Not sufficient information
  • In Rizal province, one of its power plants has been thoroughly monitored for possible conversion into a wind power plant. A propeller wind turbine is to be used. Survey showed that Rizal Province at a height of 10 meters above the ground has a minimum wind speed of 7.1 miles per hour duringthe month of June and a maximum wind speed of 12.9 miles per hour during the month of January. The minimum temperature is at 75 degree Fahrenheit during the month of January and maximum temperature is at 89 degree Fahrenheit during the month of May. The existing power plant has an output of 54MW. For the proposed wind power, the power coefficient of turbine is 35% and the generator efficiency is 95%. Theimpeller diameter is assumed not to exceed 90m. Determine the following:a. Theoretical Wind Power Outputb. Electrical Power Outputc. Number of turbines to be installed
    13.12 Fluid A is found to have a surface tension of 0.080 N m−1, a density of 1.2 × 103 kg m−3 and a contact angle of 70° with dry glass. Fluid B is found to have a surface tension of 0.100 N m−1, a density of 3.1 × 103 kg m−3 and a contact angle of 110° with dry glass. A glass capillary tube with an inner radius 1 mm is lowered into a container of fluid A and an identical capillary tube is lowered into a flask of fluid B. To what height above (or below) the fluid surface will fluids A and B rise in their respective capillary tubes?
    Imagine a plate 0.1 m long by 0.1 m wide at a temperature of 80 °C. Water is passed over its surface at a speed of 0.1 m/s and 40°C. Calculate the heat dissipated by the plate. Assume the following properties of water at 60 °C: k= 0.651 W/mK, Pr=3.02 y v = 0.478 x 10-6 m²/s.
    • SEE MORE QUESTIONS
    Recommended textbooks for you
  • Principles of Heat Transfer (Activate Learning wi...
    Mechanical Engineering
    ISBN:9781305387102
    Author:Kreith, Frank; Manglik, Raj M.
    Publisher:Cengage Learning
  • Principles of Heat Transfer (Activate Learning wi...
    Mechanical Engineering
    ISBN:9781305387102
    Author:Kreith, Frank; Manglik, Raj M.
    Publisher:Cengage Learning
    Fluid Mechanics - Viscosity and Shear Strain Rate in 9 Minutes!; Author: Less Boring Lectures;https://www.youtube.com/watch?v=_0aaRDAdPTY;License: Standard youtube license