Fundamentals of Heat and Mass Transfer
Fundamentals of Heat and Mass Transfer
7th Edition
ISBN: 9780470501979
Author: Frank P. Incropera, David P. DeWitt, Theodore L. Bergman, Adrienne S. Lavine
Publisher: Wiley, John & Sons, Incorporated
bartleby

Videos

Textbook Question
Chapter 1, Problem 1.37P

Consider the tube and inlet conditions of Problem 1.36.Heat transfer at a rate of q = 3.98 MW is delivered tothe tube. For an exit pressure of p = 8 bar , determine(a) the temperature of the water at the outlet as well asthe change in (b) combined thermal and flow work.(c) mechanical energy, and (d) total energy of the watertroll) the inlet to the outlet of the tube. Hint: As a firstestimate, neglect the change in mechanical energy insolving part (a). Relevant properties may be obtained from a thermodynamics text.

Blurred answer
Students have asked these similar questions
Steam generators are a type of heat exchanges that are used inpower plants to generate steam at desired pressure andtemperature (Fig. Q1.b). In a steam generator, saturated liquidwater at 30°C enters a 60-mm diameter tube at the volume flowrate of 12 L/s. After exchanging heat with hot gas, the waterchanges to steam and leaves the generator at a pressure of 9 MPaand a temperature of 400°C. During this process, the diameter ofthe water/steam tube does not change.  Where necessary, assume air as an ideal gas and consider R = 287J/(kg.K), Cp = 1005 J/(kg.K), Cv = 718 J/(kg.K).  (i) Calculate the steam mass flow rate and inlet velocity of the steam?  (ii) What is the exit velocity of the steam? (iii) Calculate the rate of heat transfer (in MW) required tochange the phase of liquid water to steam.
A7 To a 5ft long ½” ID pipe that is maintained at a uniform temperature of 150ºF oil enters at 70ºF with an average speed of 2ft/s. Determine the temperature rise on leaving the tube. The properties of the fluid can be taken as:=0.015lb/ft.s at 70ºF, =0.0055lb/ft.s at 150ºF, ρ=55lb/ft3, Cp=0.45 BTU/lb.ºF,k=0.1 BTU/h.ft.ºF.
Steam generators are a type of heat exchanges that are used in power plants to generate steam at desired pressure and temperature (Fig. Q1.b). In a steam generator, saturated liquid water at 30°C enters a 60-mm diameter tube at the volume flow rate of 12 L/s. After exchanging heat with hot gas, the water changes to steam and leaves the generator at a pressure of 9 MPa and a temperature of 400°C. During this process, the diameter of the water/steam tube does not change.(iv) Calculate the rate of heat transfer (in MW) required tochange the phase of liquid water to steam.

Chapter 1 Solutions

Fundamentals of Heat and Mass Transfer

Ch. 1 - The heat flux that is applied to one face of a...Ch. 1 - An inexpensive food and beverage container is...Ch. 1 - What is the thickness required of a masonry wall...Ch. 1 - A wall is made from an inhomogeneous...Ch. 1 - The 5-mm-thick bottom of a 200-mm-diameter panmay...Ch. 1 - A square silicon chip (k=150W/mK) is of width...Ch. 1 - For a boiling process such as shown in Figure 1.5...Ch. 1 - You’ve experienced convection cooling if you’ve...Ch. 1 - Air at 40°C flows over a long, 25-mm-diameter...Ch. 1 - A wall has inner and outer surface temperatures of...Ch. 1 - An electric resistance heater is embedded in a...Ch. 1 - The free convection heat transfer coefficient on a...Ch. 1 - A transmission case measures W=0.30m on a sideand...Ch. 1 - A cartridge electrical heater is shaped as a...Ch. 1 - A common procedure for measuring the velocity of...Ch. 1 - A square isothermal chip is of width w=5mm on...Ch. 1 - The temperature controller for a clothes dryer...Ch. 1 - An overhead 25-m-long, uninsulated industrial...Ch. 1 - Under conditions for which the same room...Ch. 1 - A spherical interplanetary probe of 0.5-m diameter...Ch. 1 - An instrumentation package has a spherical outer...Ch. 1 - Consider the conditions of Problem 1.22. However,...Ch. 1 - If TsTsur in Equation 1.9, the radiation heat...Ch. 1 - A vacuum system, as used ¡n sputtering...Ch. 1 - An electrical resistor is connected to a battery,...Ch. 1 - Pressurized water (pin=10bar,Tin=110C) enters...Ch. 1 - Consider the tube and inlet conditions of Problem...Ch. 1 - An internally reversible refrigerator has a...Ch. 1 - A household refrigerator operates with cold-...Ch. 1 - Chips of width L=15mm on a side are mounted to...Ch. 1 - Consider the transmission case of Problem 1...Ch. 1 - One method for growing thin silicon sheets for...Ch. 1 - Heat is transferred by radiation and convection...Ch. 1 - Radioactive wastes are packed in a long,...Ch. 1 - An aluminum plate 4 mm thick is mounted in a...Ch. 1 - A blood warmer is to be used during the...Ch. 1 - Consider a carton of milk that is refrigerated at...Ch. 1 - Prob. 1.48PCh. 1 - Liquid oxygen, which has a boiling into of 90 K...Ch. 1 - The emissivity of galvanized steel sheet, a...Ch. 1 - Three electric resistance heaters of length...Ch. 1 - A hair dryer may be idealized as a circular duct...Ch. 1 - In one stage of an annealing process, 304...Ch. 1 - Convection ovens operate on the principle of...Ch. 1 - Annealing, an important step ¡n semiconductor...Ch. 1 - In the thermal processing of semiconductor...Ch. 1 - A furnace tor processing semiconductor materials...Ch. 1 - Prob. 1.58PCh. 1 - Consider the wind turbine of Example 1.3. To...Ch. 1 - Consider the conducting rod of Example 1.4...Ch. 1 - A long bus bar (cylindrical rod used for making...Ch. 1 - A 50mm45mm20mm cell phone chargerhas a surface...Ch. 1 - A spherical, stainless steel (AISI 302) canister...Ch. 1 - A freezer compartment is covered with a...Ch. 1 - A vertical slab of Wood’s metal is joined to a...Ch. 1 - A photovoltaic panel of dimension 2m4m isinstalled...Ch. 1 - Following the hot vacuum forming of a...Ch. 1 - Prob. 1.69PCh. 1 - A computer consists of an array of five printed...Ch. 1 - Prob. 1.71PCh. 1 - The roof of a car in a parking lot absorbs a solar...Ch. 1 - Consider the conditions of Problem 1.22,but the...Ch. 1 - Most of the energy we consume as food ¡s converted...Ch. 1 - Prob. 1.75PCh. 1 - The wall of an oven used to cure plastic parts is...Ch. 1 - An experiment to determine the convection...Ch. 1 - A thin electrical heating element provides a...Ch. 1 - A rectangular forced air healing duct is suspended...Ch. 1 - Consider the steam pipe of Example 1.2. The...Ch. 1 - During its manufacture, plate glass at 600°C is...Ch. 1 - The curing press of Example 1.9 involves exposure...Ch. 1 - The diameter and surface emissivity of an...Ch. 1 - Prob. 1.84PCh. 1 - A solar flux of 700W/m2K is incident on a...Ch. 1 - In considering the following problems involving...

Additional Engineering Textbook Solutions

Find more solutions based on key concepts
The required electric power for annealing.

Introduction to Heat Transfer

the internal loading at point B.

Engineering Mechanics: Statics & Dynamics (14th Edition)

What parts are included in the vehicle chassis?

Automotive Technology: Principles, Diagnosis, And Service (6th Edition) (halderman Automotive Series)

Knowledge Booster
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • Heat transfers   Air is to be heated from 15 C to 270 C, as it flows through a tube 25mm diameter at average velocity 30 m/s. The tube surface is maintained at 280 C and the air is to be provided at rate 0.013 kg/s. Take the water properties     k=0.0336 W/m.C , υ = 25.9× 10-6 m2/s , Cp=1.014 kJ/kg.C , ρ = 0.8826 kg/ m3 , Pr=0.689 . Determine the following     The necessary tube length Heat transfer coefficient Heat transfer rate
    Steam is used to heat a cylindrical open tank of water until it boils, after which a proportion of the water in the tank is vaporised. The tank has an internal diameter of 1 m and is initially filled with water to a depth of 2 m. At the start of the process, this water is at 19°C and has a density of 998 kg/m3 . It may be assumed that ambient atmospheric pressure is 1 bar and that any effects arising from hydrostatic head can be ignored, as can heat losses from the tank to the surrounding environment. The heating medium is saturated steam at 5 bar, which enters a heating coil at the base of the tank at 5 kg/min, loses heat to the water in the tank and condenses to form saturated liquid condensate at this pressure. Using the steam table supplied: a) Find the temperature (°C) and power rating (kW) of the heater coil.  b) Find the boiling point of the water in the tank under these conditions, and the time required to bring the water to this temperature.  c) Find the proportion of water…
    Liquid bismuth flows at a rate of 4.5 kg/s through a 5.0-cm-diameter stainless-steel tube. The bismuth enters at 415◦C and is heated to 440◦C as it passes through the tube. If a constant heat flux is maintained along the tube and the tube wall is at a temperature 20◦C higher than the bismuth bulk temperature, calculate the length of tube required to effect the heat transfe
  • A gasoline engine is at a location where the temperature is measured to be 14.2 °C and produces 347 KW at 5800 rpm while consuming 0.0184 kg's of fuel. During operation, data shows that its mechanical energy loss is 18 %, the actual volume of air going into each cylinder is 80% (the volumetric efficiency has a negligible variation), and the actual fuel-to-air ratio is 0.065. What were the engine parameters at sea level conditions if the pressure here is 100.3 kPa and the temeratur here is 18 Uc hotter than that of the alevated conditions? Determine at sea-level conditions the ISFC in ka/kW-hr Use four (4) decimal places in your solution and answer.
    A gasoline engine is at a location where the temperature is measured to be 14.2 °C and produces 347 KW at 5800 rpm while consuming 0.0184 kg's of fuel. During operation, data shows that its mechanical energy loss is 18 %, the actual volume of air going into each cylinder is 80% (the volumetric efficiency has a negligible variation), and the actual fuel-to-air ratio is 0.065. What were the engine parameters at sea level conditions if the pressure here is 100.3 kPa and the temeratur here is 18 Uc hotter than that of the alevated conditions? Determine at sea-level conditions the ISFC in ka/kW-hr
    Example 4: Hot air at atmospheric pressure and 80°C enters an 8–m-long uninsulated square duct of cross section 0.2 m  0.2 m that passes through the attic of a house at a rate of 0.15 m3/s (Figure). The duct is observed to be nearly isothermal at 60°C. Determine the exit temperature of the air and the rate of heat loss from the duct to the attic space.
    • SEE MORE QUESTIONS
    Recommended textbooks for you
  • Principles of Heat Transfer (Activate Learning wi...
    Mechanical Engineering
    ISBN:9781305387102
    Author:Kreith, Frank; Manglik, Raj M.
    Publisher:Cengage Learning
  • Principles of Heat Transfer (Activate Learning wi...
    Mechanical Engineering
    ISBN:9781305387102
    Author:Kreith, Frank; Manglik, Raj M.
    Publisher:Cengage Learning
    Heat Transfer – Conduction, Convection and Radiation; Author: NG Science;https://www.youtube.com/watch?v=Me60Ti0E_rY;License: Standard youtube license