Physical Chemistry
Physical Chemistry
2nd Edition
ISBN: 9781133958437
Author: Ball, David W. (david Warren), BAER, Tomas
Publisher: Wadsworth Cengage Learning,
bartleby

Videos

Textbook Question
Chapter 1, Problem 1.38E

Calculate the Boyle temperatures for carbon dioxide, oxygen, and nitrogen using the van der Waals constants in Table 1.6. How close do they come to the experimental values from Table 1.5?

Expert Solution
Check Mark
Interpretation Introduction

Interpretation:

The Boyle temperatures for carbon dioxide, oxygen, and nitrogen using the van der Waals constants in Table 1.6. is to be calculated. And is to be compared to the experimental values from Table 1.5.

Concept introduction:

The Boyle temperature is defined as the temperature for which the second virial coefficient, becomes zero. In other words, the Boyle temperature is the temperature at which a non-ideal gas behaves like an ideal gas. In this temperature the attractive and repulsive forces acting on the gas molecules balance each out.

Answer to Problem 1.38E

The Boyle temperature of gas are as follows;

Entry Gas TB (K)(calculated values) TB (K)(experimental values) a (atm L2 / mol2) B (L / mol)
1 Carbon dioxide 1026 713 3.592 0.04267
2 Oxygen 521 405 1.360 0.03183
3 Nitrogen 433 327 1.390 0.03913

The experimental values of Boyle temperature (TB) are compared with calculated values and found to be in low.

Explanation of Solution

The Boyle temperature (TB) is defined as the temperature for which the second virial coefficient, becomes zero. In other words, the Boyle temperature is the temperature at which a non-ideal gas behaves like an ideal gas. In this temperature the attractive and repulsive forces acting on the gas molecules balance each out. Thus ‘TBis given by the expression

TB=abR(1)

a’ and ‘b’ are called as van der Waals constants and ‘a’ represents the pressure correction and it is related to the magnitude and strength of the interactions between gas particles. Similarly, ‘b’ describes the volume correction and it is having relationship to the size of the gas particles.

p=RT(1V¯+B2(T)V¯2+B3(T)V¯3+)(2)

Since, the Boyle temperature is the temperature for which second virial coefficient becomes 0. Moreover, it is at this temperature that the forces of attraction and repulsion acting on the gas molecules balance out. Higher order be virial coefficients are smaller than the second virial coefficient, the gas likes to behave as an ideal gas over a entire range of pressures. At low pressures,

the equation transforms as,

dZdP=0Ifp=0

Where, Z = Compressibility factor.

TB of carbon dioxide

Knowing a and b values of CO2 from table 1.6 TB of CO2 is calculated as follows;

a = 3.592 atm. L2 / mol2

b = 0.04267 L / mol

R = 0.0823 L. atm / K. mol

TB=3.592atm.L2/mol2(0.0823L.atm/K.mol)(0.04267L/mol)TB=3.592823×104×4267×105TB=1026K

TB of oxygen:

Knowing a and b values of oxygen from table 1.6 TB of oxygen is calculated as follows;

a = 1.360 atm. L2 / mol2

b = 0.03183 L / mol

R = 0.0823 L. atm / K. mol

TB=1.360atm.L2/mol2(0.0823L.atm/K.mol)(0.03183L/mol)TB=1.360823×104×4267×105TB=521K

TB of nitrogen:

Knowing a and b values of nitrogen from table 1.6 TB of nitrogen is calculated as follows;

a = 1.390 atm. L2 / mol2

b = 0.03913 L / mol

R = 0.0823 L. atm / K. mol

TB=1.390atm.L2/mol2(0.0823L.atm/K.mol)(0.031913L/mol)TB=1.390823×104×3913×105TB=433K

Moreover, the experimental Boyle temperature (table 1.5) values are compared with calculated values and the experimental values are found to be low.

Conclusion

Thus, the Boyle temperatures for carbon dioxide, oxygen, and nitrogen using the van der Waals constants in Table 1.6. is calculated. And compared to the experimental values from Table 1.5.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!

Chapter 1 Solutions

Physical Chemistry

Ch. 1 - What is the value of FP for a sample of gas whose...Ch. 1 - Prob. 1.12ECh. 1 - Hydrogen gas is used in weather balloon because it...Ch. 1 - Prob. 1.14ECh. 1 - A 2.0 L soda bottle is pressurized with 4.5 atm of...Ch. 1 - The Mount Pinatubo volcano eruption in 1991...Ch. 1 - Prob. 1.17ECh. 1 - Scottish physicist W. J. M. Rankine proposed an...Ch. 1 - Use the two appropriate values of R to determine a...Ch. 1 - Prob. 1.20ECh. 1 - Pressures of gases in mixtures are referred to as...Ch. 1 - Earths atmosphere is approximately 80 N2 and 20...Ch. 1 - The atmospheric surface pressure on Venus is 90...Ch. 1 - Prob. 1.24ECh. 1 - Prob. 1.25ECh. 1 - In the anaerobic oxidation of glucose by yeast,...Ch. 1 - What are the slopes of the following lines at the...Ch. 1 - For the following function, evaluate the...Ch. 1 - Determine the expressions for the following,...Ch. 1 - Determine the expressions for the following,...Ch. 1 - Prob. 1.31ECh. 1 - Prob. 1.32ECh. 1 - Prob. 1.33ECh. 1 - Prob. 1.34ECh. 1 - What properties of a nonideal gas do the Vander...Ch. 1 - Prob. 1.36ECh. 1 - Prob. 1.37ECh. 1 - Calculate the Boyle temperatures for carbon...Ch. 1 - Prob. 1.39ECh. 1 - Prob. 1.40ECh. 1 - Table 1.4 show that the second virial coefficient...Ch. 1 - Prob. 1.42ECh. 1 - What is the van der Waals constant a for Ne in...Ch. 1 - Prob. 1.44ECh. 1 - Under what conditions would the van der Waals...Ch. 1 - By definition, the compressibility of an ideal gas...Ch. 1 - The second virial coefficient B and the third...Ch. 1 - Use the approximation 1 x-1 1 x x2 to...Ch. 1 - Why is nitrogen a good choice for the study of...Ch. 1 - Evaluate for a gas following the Redlich-Kwong...Ch. 1 - Numerically evaluate for one mole of methane...Ch. 1 - Under what conditions of volume does a van der...Ch. 1 - At high temperatures, one of the van der Waals...Ch. 1 - Under what conditions of temperature does a...Ch. 1 - The Berthelot equation of state for one mole of...Ch. 1 - Prob. 1.56ECh. 1 - Referring to exercises 1.6 and 1.7, does it matter...Ch. 1 - Prob. 1.58ECh. 1 - Use Figure 1.11 to construct the cyclic rule...Ch. 1 - Prob. 1.60ECh. 1 - Prob. 1.61ECh. 1 - Calculate for one mole of an ideal gas at STP and...Ch. 1 - Prob. 1.63ECh. 1 - Show that = T/p for an ideal gas.Ch. 1 - Determine an expression for V/T p, n in terms of ...Ch. 1 - Prob. 1.66ECh. 1 - Prob. 1.67ECh. 1 - Perform a units analysis on the exponent of the...Ch. 1 - Using the barometric formula, calculate the...Ch. 1 - The barometric formula can also be used for...Ch. 1 - Prob. 1.71ECh. 1 - Prob. 1.72ECh. 1 - Prob. 1.73ECh. 1 - Prob. 1.74ECh. 1 - Prob. 1.75ECh. 1 - Prob. 1.76ECh. 1 - Prob. 1.77ECh. 1 - Prob. 1.78ECh. 1 - Prob. 1.79ECh. 1 - Use the ideal gas law to symbolically prove the...Ch. 1 - Prob. 1.81E
Knowledge Booster
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Recommended textbooks for you
  • Physical Chemistry
    Chemistry
    ISBN:9781133958437
    Author:Ball, David W. (david Warren), BAER, Tomas
    Publisher:Wadsworth Cengage Learning,
    World of Chemistry, 3rd edition
    Chemistry
    ISBN:9781133109655
    Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCoste
    Publisher:Brooks / Cole / Cengage Learning
    Chemistry: Principles and Reactions
    Chemistry
    ISBN:9781305079373
    Author:William L. Masterton, Cecile N. Hurley
    Publisher:Cengage Learning
  • General Chemistry - Standalone book (MindTap Cour...
    Chemistry
    ISBN:9781305580343
    Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
    Publisher:Cengage Learning
    Chemistry for Engineering Students
    Chemistry
    ISBN:9781337398909
    Author:Lawrence S. Brown, Tom Holme
    Publisher:Cengage Learning
    Chemistry by OpenStax (2015-05-04)
    Chemistry
    ISBN:9781938168390
    Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark Blaser
    Publisher:OpenStax
  • Physical Chemistry
    Chemistry
    ISBN:9781133958437
    Author:Ball, David W. (david Warren), BAER, Tomas
    Publisher:Wadsworth Cengage Learning,
    World of Chemistry, 3rd edition
    Chemistry
    ISBN:9781133109655
    Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCoste
    Publisher:Brooks / Cole / Cengage Learning
    Chemistry: Principles and Reactions
    Chemistry
    ISBN:9781305079373
    Author:William L. Masterton, Cecile N. Hurley
    Publisher:Cengage Learning
    General Chemistry - Standalone book (MindTap Cour...
    Chemistry
    ISBN:9781305580343
    Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
    Publisher:Cengage Learning
    Chemistry for Engineering Students
    Chemistry
    ISBN:9781337398909
    Author:Lawrence S. Brown, Tom Holme
    Publisher:Cengage Learning
    Chemistry by OpenStax (2015-05-04)
    Chemistry
    ISBN:9781938168390
    Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark Blaser
    Publisher:OpenStax
    DISTINCTION BETWEEN ADSORPTION AND ABSORPTION; Author: 7activestudio;https://www.youtube.com/watch?v=vbWRuSk-BhE;License: Standard YouTube License, CC-BY
    Difference Between Absorption and Adsorption - Surface Chemistry - Chemistry Class 11; Author: Ekeeda;https://www.youtube.com/watch?v=e7Ql2ZElgc0;License: Standard Youtube License