ORGANIC CHEMISTRY-STUDY GDE...-W/ACCESS
ORGANIC CHEMISTRY-STUDY GDE...-W/ACCESS
4th Edition
ISBN: 9780078051555
Author: SMITH
Publisher: MCG
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 1, Problem 1.38P

Zingerone gives ginger its pungent taste.

Chapter 1, Problem 1.38P, Zingerone gives ginger its pungent taste. a.What is the molecular formula of zingerone? b.How many

a. What is the molecular formula of zingerone?

b. How many lone pairs are present?

c. Draw a skeletal structure.

d. How many s p 2 hybridized carbon atoms are present?

e. What orbitals are used to form each indicated bond ( [ 1 ] [ 4 ] ) ?

Expert Solution
Check Mark
Interpretation Introduction

(a)

Interpretation: The molecular formula of zingerone is to be stated.

Concept introduction: In ball-and-stick model, each colored ball represents a specific atom and each stick represents a bond. In this model, each black ball represents C atoms, each gray ball represents H atoms, and each red ball represents O atoms.

Answer to Problem 1.38P

The molecular formula of zingerone is C11H14O3.

Explanation of Solution

The given ball-and-stick model of zingerone is,

ORGANIC CHEMISTRY-STUDY GDE...-W/ACCESS, Chapter 1, Problem 1.38P , additional homework tip  1

Figure 1

In ball-and-stick model, each colored ball represents a specific atom and each stick represents a bond. In this model, each black ball represents C atoms, each gray ball represents H atoms, and each red ball represents O atoms.

In the above model,

• There are three red balls. Thus, there are three O atoms.

• There are eleven black balls. Thus, there are eleven C atoms.

• There are fourteen grey balls. Thus, there are fourteen H atoms.

Hence, the molecular formula of zingerone is C11H14O3.

Conclusion

The molecular formula of zingerone is C11H14O3.

Expert Solution
Check Mark
Interpretation Introduction

(b)

Interpretation: The number of lone pairs in zingerone is to be stated.

Concept introduction: In a compound or molecule, the lone pairs represent number of unshared electrons on atom. An atom may or may not have unshared electrons. For example, carbon and hydrogen atoms have no lone pair but each oxygen atom has two lone pairs.

Answer to Problem 1.38P

There are total 6 lone pairs in zingerone.

Explanation of Solution

The molecular formula of citric acid is C11H14O3. Carbon and hydrogen atoms have no lone pair in citric acid, but each oxygen atom has two lone pairs. There are three oxygen atoms in zingerone. Thus, there are total 6 lone pairs (3×2=6) in zingerone.

Conclusion

There are total 6 lone pairs in zingerone.

Expert Solution
Check Mark
Interpretation Introduction

(c)

Interpretation: A skeletal structure of zingerone is to be drawn.

Concept introduction: A ball-and-stick model is converted into skeletal structure by replacing black ball with C, gray ball with H, and red ball with O. Omit the H atom on carbon, but not in the case of heteroatom.

Answer to Problem 1.38P

A skeletal structure of zingerone is,

ORGANIC CHEMISTRY-STUDY GDE...-W/ACCESS, Chapter 1, Problem 1.38P , additional homework tip  2

Explanation of Solution

In ball-and-stick model each colored ball represents a specific atom and each stick represents a bond. A ball-and-stick model is converted into skeletal structure by replacing black ball with C, gray ball with H, red ball with O, and blue ball with N. Omit the H atom on carbon, but not in the case of heteroatom.

A skeletal structure of zingerone is shown in Figure 2.

ORGANIC CHEMISTRY-STUDY GDE...-W/ACCESS, Chapter 1, Problem 1.38P , additional homework tip  3

Figure 2

Conclusion

In ball-and-stick model each colored ball represents a specific atom and each stick represents a bond.

Expert Solution
Check Mark
Interpretation Introduction

(d)

Interpretation: The number of sp2 hybridized carbon in zingerone is to be stated.

Concept introduction: According to the rule of hybridization, an atom that is surrounded with two groups is sp hybridized, an atom that is surrounded with three groups is sp2 hybridized, and an atom that is surrounded with four groups is sp3 hybridized.

Answer to Problem 1.38P

There are seven sp2 hybridized carbon atoms in zingerone.

Explanation of Solution

The Lewis structure of zingerone is,

ORGANIC CHEMISTRY-STUDY GDE...-W/ACCESS, Chapter 1, Problem 1.38P , additional homework tip  4

Figure 3

According to the rules of hybridization, an atom that is surrounded with two groups is sp hybridized, an atom that is surrounded with three groups is sp2 hybridized, and an atom that is surrounded with four groups is sp3 hybridized.

The sp2 hybridized carbon atoms (surrounded by three groups) are shown in Figure 4.

ORGANIC CHEMISTRY-STUDY GDE...-W/ACCESS, Chapter 1, Problem 1.38P , additional homework tip  5

Figure 4

Thus, there are seven sp2 hybridized carbon atoms in zingerone.

Conclusion

There are seven sp2 hybridized carbon atoms in zingerone.

Expert Solution
Check Mark
Interpretation Introduction

(e)

Interpretation: The orbitals that are used to form each indicated bond is to be stated.

Concept introduction: According to the rule of hybridization, an atom that is surrounded with two groups is sp hybridized, an atom that is surrounded with three groups is sp2 hybridized, and an atom that is surrounded with four groups is sp3 hybridized.

Answer to Problem 1.38P

Bond [1] is formed by Csp2Csp3 hybridized orbitals. Bond [2] is formed by Csp3Csp3 hybridized orbitals. Bond [3] is formed by Csp3H1s orbitals. Bond [4] is formed by Csp2H1s hybridized orbitals.

Explanation of Solution

Bond [1] represents bonding between the carbon atom of benzene (C6H6) and the carbon atom of CH2 group. The carbon atom of benzene is sp2 hybridized and the carbon atom of CH2 group is sp3 hybridized.

Thus, [1] is formed by Csp2Csp3 hybridized orbitals.

Bond [2] represents CC bond in which both carbon atoms are sp3 hybridized. Thus, [2] is formed by Csp3Csp3 hybridized orbitals.

Bond [3] represents, CH bond. This bond is formed through sp3 hybridized orbital of carbon and 1s orbital of hydrogen.

Thus, [3] is formed by Csp3H1s orbitals.

Bond [4] represents bonding between the carbon atom of benzene (C6H6), and hydrogen. This bond is formed through sp2 hybridized orbital of carbon and 1s orbital of hydrogen.

Thus, bond [4] is formed by Csp2H1s orbitals.

Conclusion

The number of surrounded group around any atom predicts the hybridization of that atom, which is further helpful in predicting the orbitals involved in the bond formation.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
1. Calculate the percentage s and p characters in sp, sp^2 and sp^3 hybrid orbitals. 2. Draw the molecular orbital diagram of propene, CH3-CH=CH2. 3. Draw an orbital diagram of an allene, H2C=C=CH2. What hybridization must the central carbon atom have in order to form two double bonds? 4. Describe the shape of sp^3 hybrid orbitals. 5. Dicuss, with illustrations, the two main steps in the hybridization of a carbon atom. 6.a. Arrange the following organic molecules in order of increasing acidity, starting with the least acidic. CH3CH3, HC(=_)CH and CH2=CH2 b. How many hybrid orbitals are formed when one 2s atomic orbital mixes with two 2p atomic orbitals? What shape do they form? c. Describe in detail, the shape of p atomic orbitals. d. Giving an example, explain what is meant by the excited-state electronic configuration of an atom of an element. e. Using clear illustrations, discuss the main differences between E1 and E2 mechanisms in organic reactions.
One of the first drugs to be approved for use in treatment of acccquired immune deficiency syndrome (AIDS) was azidothymidine (AZT). Complete the Lewis structure for AZT                    a. How many carbon atoms are sp3 hybridised? b. How many carbon atoms are sp2 hybridised? c. Which atom is sp hybridised? d. How many σ bonds are in the molecule? e. How many π bonds are in the molecule? f. What is the N9N9N bond angle in the azide (--N3) group? g. What is the H--Q--C bond angle in the side group attached to the five-membered ring? h. What is the hybridization of the oxygen atom in the --CH2OH group?
One of the first drugs to be approved for use in treatment of acquired immune deficiency syndrome (AIDS) was azidothymidine (AZT). Complete the Lewis structure for AZT. a. How many carbon atoms are sp3 hybridized? b. How many carbon atoms are sp2 hybridized? c. Which atom is sp hybridized? d. How many σ bonds are in the molecule? e. How many π bonds are in the molecule? f. Wnat isthe N9N9N bond angle inthe azide (-N3) group? g. What is the H-Q-C bond angle in the side group attached to the five­ membered ring? h. What is the hybridization of the oxygen atom in the -CH2OH group?

Chapter 1 Solutions

ORGANIC CHEMISTRY-STUDY GDE...-W/ACCESS

Ch. 1 - Prob. 1.11PCh. 1 - Prob. 1.12PCh. 1 - Draw a second resonance structure for each...Ch. 1 - Prob. 1.14PCh. 1 - Draw a second resonance structure for nitrous...Ch. 1 - Prob. 1.16PCh. 1 - Prob. 1.17PCh. 1 - Prob. 1.18PCh. 1 - Prob. 1.19PCh. 1 - Prob. 1.20PCh. 1 - Simplify each condensed structure by using...Ch. 1 - Prob. 1.22PCh. 1 - Prob. 1.23PCh. 1 - Convert each skeletal structure to a complete...Ch. 1 - Draw in all hydrogens and lone pairs on the...Ch. 1 - Prob. 1.26PCh. 1 - What orbitals are used to form each of the CC, and...Ch. 1 - What orbitals are used to form each bond in the...Ch. 1 - Determine the hybridization around the highlighted...Ch. 1 - Classify each bond in the following molecules as ...Ch. 1 - Prob. 1.31PCh. 1 - Rank the following atoms in order of increasing...Ch. 1 - Prob. 1.33PCh. 1 - Prob. 1.34PCh. 1 - Provide the following information about...Ch. 1 - Use the ball-and-stick model to answer each...Ch. 1 - Citric acid is responsible for the tartness of...Ch. 1 - Zingerone gives ginger its pungent taste. a.What...Ch. 1 - Two radioactive isotopes of iodine used for the...Ch. 1 - Prob. 1.40PCh. 1 - Assign formal charges to each carbon atom in the...Ch. 1 - Assign formal charges to each N and O atom in the...Ch. 1 - Draw one valid Lewis structure for each compound....Ch. 1 - Prob. 1.44PCh. 1 - Prob. 1.45PCh. 1 - Prob. 1.46PCh. 1 - Draw all possible isomers for each molecular...Ch. 1 - 1.45 Draw Lewis structures for the nine isomers...Ch. 1 - Prob. 1.49PCh. 1 - Prob. 1.50PCh. 1 - Prob. 1.51PCh. 1 - Prob. 1.52PCh. 1 - Prob. 1.53PCh. 1 - Prob. 1.54PCh. 1 - Draw all reasonable resonance structures for each...Ch. 1 - Prob. 1.56PCh. 1 - Rank the resonance structures in each group in...Ch. 1 - 1.56 Consider the compounds and ions with curved...Ch. 1 - 1.57 Predict all bond angles in each...Ch. 1 - Predict the geometry around each indicated atom....Ch. 1 - Prob. 1.61PCh. 1 - Prob. 1.62PCh. 1 - Draw in all the carbon and hydrogen atoms in each...Ch. 1 - Prob. 1.64PCh. 1 - Prob. 1.65PCh. 1 - Prob. 1.66PCh. 1 - Prob. 1.67PCh. 1 - Each of the following condensed or skeletal...Ch. 1 - Prob. 1.69PCh. 1 - Prob. 1.70PCh. 1 - Prob. 1.71PCh. 1 - Prob. 1.72PCh. 1 - Prob. 1.73PCh. 1 - Prob. 1.74PCh. 1 - Two useful organic compounds that contain Cl atoms...Ch. 1 - Use the symbols + and to indicate the polarity of...Ch. 1 - Label the polar bonds in each molecule. Indicate...Ch. 1 - Answer the following questions about acetonitrile...Ch. 1 - Prob. 1.79PCh. 1 - The principles of this chapter can be applied to...Ch. 1 - a. What is the hybridization of each N atom in...Ch. 1 - 1.77 Stalevo is the trade name for a medication...Ch. 1 - 1.78 and are two highly reactive carbon...Ch. 1 - 1.79 The N atom in (acetamide) is hybridized,...Ch. 1 - Prob. 1.85PCh. 1 - Prob. 1.86PCh. 1 - Prob. 1.87PCh. 1 - Prob. 1.88PCh. 1 - Prob. 1.89PCh. 1 - Prob. 1.90P
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
  • Text book image
    Chemistry
    Chemistry
    ISBN:9781133611097
    Author:Steven S. Zumdahl
    Publisher:Cengage Learning
    Text book image
    Chemistry
    Chemistry
    ISBN:9781305957404
    Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
    Publisher:Cengage Learning
    Text book image
    Chemistry: An Atoms First Approach
    Chemistry
    ISBN:9781305079243
    Author:Steven S. Zumdahl, Susan A. Zumdahl
    Publisher:Cengage Learning
  • Text book image
    Chemistry & Chemical Reactivity
    Chemistry
    ISBN:9781133949640
    Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
    Publisher:Cengage Learning
    Text book image
    General Chemistry - Standalone book (MindTap Cour...
    Chemistry
    ISBN:9781305580343
    Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
    Publisher:Cengage Learning
    Text book image
    Chemistry: Principles and Practice
    Chemistry
    ISBN:9780534420123
    Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
    Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781133611097
Author:Steven S. Zumdahl
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Text book image
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Stoichiometry - Chemistry for Massive Creatures: Crash Course Chemistry #6; Author: Crash Course;https://www.youtube.com/watch?v=UL1jmJaUkaQ;License: Standard YouTube License, CC-BY
Bonding (Ionic, Covalent & Metallic) - GCSE Chemistry; Author: Science Shorts;https://www.youtube.com/watch?v=p9MA6Od-zBA;License: Standard YouTube License, CC-BY
General Chemistry 1A. Lecture 12. Two Theories of Bonding.; Author: UCI Open;https://www.youtube.com/watch?v=dLTlL9Z1bh0;License: CC-BY