Loose Leaf For Fluid Mechanics
Loose Leaf For Fluid Mechanics
8th Edition
ISBN: 9781259169922
Author: White, Frank M.
Publisher: McGraw-Hill Education
bartleby

Videos

Textbook Question
Chapter 1, Problem 1.3CP

Two thin flat plates, tilted at an angle a, are placed in a tank of liquid of known surface tension Y and contact angle θ , as shown in Fig. C1.3. At the free surface of the liquid in the tank, the two plates arc a distance L apart and have width b into the page. The liquid rises a distance h between the plates, as shown.

(a) What is the total upward (z-directed) force, due to surface tension, acting on the liquid column between the plates?

(b) If the liquid density is ρ , find an expression for surface tension Y in terms of the other variables.

Chapter 1, Problem 1.3CP, Two thin flat plates, tilted at an angle a, are placed in a tank of liquid of known surface tension

Blurred answer
Students have asked these similar questions
A hemispherical container, 26 inches in diameter, is filledwith a liquid at 20 ° C and weighed. The liquid weight isfound to be 1617 ounces. ( a ) What is the density of thefluid, in kg/m 3 ? ( b ) What fluid might this be? Assume standardgravity, g = 9.807 m/s 2 .
When a clean glass tube with a diameter of 2 mm is immersed in water at 20 ° C, how many mm will the capillary rise occur in the glass tube? For water at 20 ° C, surface tension is given as 0.073 N / m, density 1000 kg / m3, contact angle 0 ° C and gravitational acceleration 10 m / s2.
Suppose that the U-tube of Fig.  is rotated about axisDC . If the fl uid is water at 122 ° F and atmospheric pressure is 2116 lbf/ft 2 absolute, at what rotation rate will the fl uid withinthe tube begin to vaporize? At what point will this occur?

Chapter 1 Solutions

Loose Leaf For Fluid Mechanics

Ch. 1 - P1.11 In English Engineering units, the specific...Ch. 1 - For low-speed (laminar) steady flow through a...Ch. 1 - The efficiency ? of a pump is defined as the...Ch. 1 - Figure P1.14 shows the flow of water over a dam....Ch. 1 - The height H that fluid rises in a liquid...Ch. 1 - Algebraic equations such as Bernoulli's relation,...Ch. 1 - The Hazen-Williams hydraulics formula for volume...Ch. 1 - For small particles at low velocities, the first...Ch. 1 - In his study of the circular hydraulic jump formed...Ch. 1 - Books on porous media and atomization claim that...Ch. 1 - Aeronautical engineers measure the pitching moment...Ch. 1 - Prob. 1.22PCh. 1 - During World War II, Sir Geoffrey Taylor, a...Ch. 1 - Air, assumed to be an ideal gas with k = 1.40,...Ch. 1 - On a summer day in Narragansett, Rhode Island, the...Ch. 1 - When we in the United States say a car's tire is...Ch. 1 - Prob. 1.27PCh. 1 - Wet atmospheric air at 100 percent relative...Ch. 1 - Prob. 1.29PCh. 1 - P1.30 Repeat Prob. 1.29 if the tank is filled with...Ch. 1 - Prob. 1.31PCh. 1 - Prob. 1.32PCh. 1 - A tank contai as 9 kg of CO2at 20°C and 2.0 MPa....Ch. 1 - Consider steam at the following state near the...Ch. 1 - In Table A.4, most common gases (air, nitrogen,...Ch. 1 - Prob. 1.36PCh. 1 - A near-ideal gas has a molecular weight of 44 and...Ch. 1 - In Fig. 1.7, if the fluid is glycerin at 20°C and...Ch. 1 - Prob. 1.39PCh. 1 - Glycerin at 20°C fills the space between a hollow...Ch. 1 - An aluminum cylinder weighing 30 N, 6 cm in...Ch. 1 - Prob. 1.42PCh. 1 - Prob. 1.43PCh. 1 - One type of viscometer is simply a long capillary...Ch. 1 - A block of weight W slides down an inclined plane...Ch. 1 - A simple and popular model for two nonnewtonian...Ch. 1 - Data for the apparent viscosity of average human...Ch. 1 - A thin plate is separated from two fixed plates by...Ch. 1 - An amazing number of commercial and laboratory...Ch. 1 - Prob. 1.50PCh. 1 - Prob. 1.51PCh. 1 - The belt in Fig. P1.52 moves at a steady velocity...Ch. 1 - A solid tune of angle 2 , base r0, and density...Ch. 1 - A disk of radius R rotates at an angular velocity ...Ch. 1 - A block of weight W is being pulled over a table...Ch. 1 - The device in Fig. P1.56 is called a cone-plate...Ch. 1 - Extend the steady flow between a fixed lower plate...Ch. 1 - The laminar pipe flow example of Prob. 1.12 can be...Ch. 1 - A solid cylinder of diameter D, length L, and...Ch. 1 - Prob. 1.60PCh. 1 - Prob. 1.61PCh. 1 - P1.62 The hydrogen bubbles that produced the...Ch. 1 - Derive Eq. (1.33) by making a force balance on the...Ch. 1 - Pressure in a water container can be measured by...Ch. 1 - The system in Fig. P1.65 is used to calculate the...Ch. 1 - Prob. 1.66PCh. 1 - Prob. 1.67PCh. 1 - Prob. 1.68PCh. 1 - A solid cylindrical needle of diameter d, length...Ch. 1 - Derive an expression for the capillary height...Ch. 1 - A soap bubble of diameter D1coalesces with another...Ch. 1 - Early mountaineers boiled water to estimate their...Ch. 1 - A small submersible moves al velocity V, in fresh...Ch. 1 - Oil, with a vapor pressure of 20 kPa, is delivered...Ch. 1 - An airplane flies at 555 mi/h. At what altitude in...Ch. 1 - Prob. 1.76PCh. 1 - Prob. 1.77PCh. 1 - P1.78 Sir Isaac Newton measured the speed of sound...Ch. 1 - Prob. 1.79PCh. 1 - Prob. 1.80PCh. 1 - Use Eq. (1.39) to find and sketch the streamlines...Ch. 1 - P1.82 A velocity field is given by u = V cos, v =...Ch. 1 - Prob. 1.83PCh. 1 - In the early 1900s, the British chemist Sir Cyril...Ch. 1 - Prob. 1.85PCh. 1 - A right circular cylinder volume v is to be...Ch. 1 - The absolute viscosity of a fluid is primarily a...Ch. 1 - Prob. 1.2FEEPCh. 1 - Helium has a molecular weight of 4.003. What is...Ch. 1 - An oil has a kinematic viscosity of 1.25 E-4 m2/s...Ch. 1 - Prob. 1.5FEEPCh. 1 - Prob. 1.6FEEPCh. 1 - FE1.7 Two parallel plates, one moving at 4 m/s...Ch. 1 - Prob. 1.8FEEPCh. 1 - A certain water flow at 20°C has a critical...Ch. 1 - Prob. 1.10FEEPCh. 1 - Sometimes we can develop equations and solve...Ch. 1 - When a person ice skates, the surface of the ice...Ch. 1 - Two thin flat plates, tilted at an angle a, are...Ch. 1 - Oil of viscosity and density drains steadily...Ch. 1 - Prob. 1.5CPCh. 1 - Prob. 1.6CPCh. 1 - Prob. 1.7CPCh. 1 - C1.8 A mechanical device that uses the rotating...Ch. 1 - Prob. 1.9CPCh. 1 - A popular gravity-driven instrument is the...Ch. 1 - Mott [Ref. 49, p. 38] discusses a simple...Ch. 1 - A solid aluminum disk (SG = 2.7) is 2 in in...
Knowledge Booster
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • In Fig., gate AB is 5 ft wide into the paper, and stopB will break if the water force on it equals 9200 lbf. Forwhat water depth h is this condition reached?
    A solid cone of angle 2θ, mass (m), base radius (r0), and density (ρc), is rotating with angular velocity (w0) on its conical seat. The clearance (h) is filled with oil of viscosity (μ). Neglecting air resistance, determine: a) an expression for the moment (M) as a function of r0, w0,μ,θ, and h. b) an expression for the angular velocity (w) for t≥0 as a function of w0,μ,θ,h, r0,m and t if an external torque is not applied. If the radius of gyration of the cone is 16 cm, determine: c ) the value of the angular momentum and velocity if w0=60RPM,h=0.05mm,θ=30°,μ=0.98cPoise , m=20kg, t=2.0s
    A tripod holding a nozzle, which directs a 5-cmdiameter stream of water from a hose, is shown. The nozzle mass is 10 kg when filled with water. The tripod is rated to provide 1800 N of holding force. A firefighter was standing 60 cm behind the nozzle and was hit by the nozzle when the tripod suddenly failed and released the nozzle. You have been hired as an accident reconstructionist and, after testing the tripod, have determined that as water flow rate increased, it did collapse at 1800 N. In your final report you must state the water velocity and the flow rate consistent with the failure and the nozzle velocity when it hit the firefighter. For simplicity, ignore pressure and momentum effects in the upstream portion of the hose
  • When a person ice skates, the surface of the ice actuallymelts beneath the blades, so that he or she skates on a thinsheet of water between the blade and the ice.( a ) Find an expression for total friction force on the bottomof the blade as a function of skater velocity V , bladelength L , water thickness (between the blade and theice) h , water viscosity μ , and blade width W .( b ) Suppose an ice skater of total mass m is skatingalong at a constant speed of V 0 when she suddenlystands stiff with her skates pointed directly forward,allowing herself to coast to a stop. Neglecting frictiondue to air resistance, how far will she travelbefore she comes to a stop? (Remember, she iscoasting on two skate blades.) Give your answer forthe total distance traveled, x , as a function of V 0 , m ,L , h , μ , and W .( c ) Find x for the case where V 0 = 4.0 m/s, m = 100 kg,L = 30 cm, W = 5.0 mm, and h = 0.10 mm. Do youthink our assumption of negligible air resistance is agood one?
    The fuel gage for a gasoline tank in a car reads proportionalto the bottom gage pressure as in Fig. . Ifthe tank is 30 cm deep and accidentally contains 2 cmof water plus gasoline, how many centimeters of airremain at the top when the gage erroneously reads“full”?
    Derive an expression for the capillary height change h for afluid of surface tension Y and contact angle θ between twovertical parallel plates a distance W apart, as in Fig. What will h be for water at 20°C if W = 0.5 mm?
    • SEE MORE QUESTIONS
    Recommended textbooks for you
  • Elements Of Electromagnetics
    Mechanical Engineering
    ISBN:9780190698614
    Author:Sadiku, Matthew N. O.
    Publisher:Oxford University Press
    Mechanics of Materials (10th Edition)
    Mechanical Engineering
    ISBN:9780134319650
    Author:Russell C. Hibbeler
    Publisher:PEARSON
    Thermodynamics: An Engineering Approach
    Mechanical Engineering
    ISBN:9781259822674
    Author:Yunus A. Cengel Dr., Michael A. Boles
    Publisher:McGraw-Hill Education
  • Control Systems Engineering
    Mechanical Engineering
    ISBN:9781118170519
    Author:Norman S. Nise
    Publisher:WILEY
    Mechanics of Materials (MindTap Course List)
    Mechanical Engineering
    ISBN:9781337093347
    Author:Barry J. Goodno, James M. Gere
    Publisher:Cengage Learning
    Engineering Mechanics: Statics
    Mechanical Engineering
    ISBN:9781118807330
    Author:James L. Meriam, L. G. Kraige, J. N. Bolton
    Publisher:WILEY
  • Elements Of Electromagnetics
    Mechanical Engineering
    ISBN:9780190698614
    Author:Sadiku, Matthew N. O.
    Publisher:Oxford University Press
    Mechanics of Materials (10th Edition)
    Mechanical Engineering
    ISBN:9780134319650
    Author:Russell C. Hibbeler
    Publisher:PEARSON
    Thermodynamics: An Engineering Approach
    Mechanical Engineering
    ISBN:9781259822674
    Author:Yunus A. Cengel Dr., Michael A. Boles
    Publisher:McGraw-Hill Education
    Control Systems Engineering
    Mechanical Engineering
    ISBN:9781118170519
    Author:Norman S. Nise
    Publisher:WILEY
    Mechanics of Materials (MindTap Course List)
    Mechanical Engineering
    ISBN:9781337093347
    Author:Barry J. Goodno, James M. Gere
    Publisher:Cengage Learning
    Engineering Mechanics: Statics
    Mechanical Engineering
    ISBN:9781118807330
    Author:James L. Meriam, L. G. Kraige, J. N. Bolton
    Publisher:WILEY
    Physics 33 - Fluid Statics (1 of 10) Pressure in a Fluid; Author: Michel van Biezen;https://www.youtube.com/watch?v=mzjlAla3H1Q;License: Standard YouTube License, CC-BY