Principles of Heat Transfer (Activate Learning with these NEW titles from Engineering!)
Principles of Heat Transfer (Activate Learning with these NEW titles from Engineering!)
8th Edition
ISBN: 9781305387102
Author: Kreith, Frank; Manglik, Raj M.
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 1, Problem 1.44P

A composite refrigerator wall is composed of 5 cm of corkboard sandwiched between a 1.2-cm-thick layer of oak and a 0.8-mm-thick layer of aluminum lining on the inner surface. The average convection heat transfer coefficients at the interior and exterior wall are 11 and 8.5   W / ( m 2 K ) respectively. (a) Draw the thermal circuit. (b) Calculate the individual resistances of the components of this composite wall and the resistances at the surfaces. (c) Calculate the overall heat transfer coefficient through the wall. (d) For an air temperature of –1°C inside the refrigerator and 32°C outside, calculate the rate of heat transfer per unit area through the wall.

Blurred answer
Students have asked these similar questions
1. (a)   Consider a room with a 1.8-m-high and 2.0-m-wide double-pane window consisting of two 4-mm-thick layers of glass separated by a 10-mm-wide stagnant air space. The convection heat transfer coefficients on the inner and outer surfaces of the window are 12 W/m2 K and 25 W/m2 K, respectively, while the average thermal conductivity of glass is 0.78 W/m K; and the air, 0.026 W/m K.   If the room is maintained at 22 oC, the outside temperature is -4 oC and heat transfer due to radiation can be neglected, determine:                 (i) Draw the sketch and thermal resistance network;                                                (ii) the total thermal resistance;                (iii) the steady rate of heat transfer through this double-pane window;                                                                              (iv) the temperature of the inner surface of the window.…
A long stainless-steel (AISI 316) steam pipe, with an inside diameter of 6.00 cm and an outside diameter of 8.00 cm, is covered with a layer of asbestos insulation (k = 0.150 W/m-K) 1.00 cm thick, which in turn is covered with foam insulation (k = 0.044 W/m-K) 6.00 cm thick. The inside surface temperature of the stainless-steel steam pipe is measured to be 250.0°C, while the outside surface of the foam is exposed to convection, T_inf = 25.0°C, h_inf = 15.0 W/m^2-K. • Draw and label a sketch of this system. Include dimensions, known temperatures, etc. • Draw and completely label the corresponding 1-D steady-state conduction resistor diagram. • Determine the heat transfer rate through the pipe per unit length. • Calculate the temperature at the asbestos/foam interface.
In a multilayered rectangular wall, the thermal resistance of the first layer is 0.005 °C/W, the resistance of the second layer is 0.2° C/W, and for the third layer it is 0.1 ° C/W. The overall temperature gradient in the multilayered wall from one side to another is 70° C. a. Determine the heat flux through the wall. b. If the thermal resistance of the second layer is doubled to 0.4° C/W, what will be its influence in % on the heat flux, assuming the temperature gradient remains the same?

Chapter 1 Solutions

Principles of Heat Transfer (Activate Learning with these NEW titles from Engineering!)

Ch. 1 - 1.11 Calculate the heat loss through a glass...Ch. 1 - 1.12 A wall with a thickness is made of a...Ch. 1 - 1.13 If the outer air temperature in Problem is...Ch. 1 - Using Table 1.4 as a guide, prepare a similar...Ch. 1 - 1.15 A thermocouple (0.8-mm-diameter wire) used to...Ch. 1 - Water at a temperature of 77C is to be evaporated...Ch. 1 - The heat transfer rate from hot air by convection...Ch. 1 - The heat transfer coefficient for a gas flowing...Ch. 1 - 1.19 A cryogenic fluid is stored in a...Ch. 1 - A high-speed computer is located in a...Ch. 1 - 1.21 In an experimental set up in a laboratory, a...Ch. 1 - 1.22 In order to prevent frostbite to skiers on...Ch. 1 - Using the information in Problem 1.22, estimate...Ch. 1 - Two large parallel plates with surface conditions...Ch. 1 - 1.25 A spherical vessel, 0.3 m in diameter, is...Ch. 1 - 1.26 Repeat Problem 1.25 but assume that the...Ch. 1 - Determine the rate of radiant heat emission in...Ch. 1 - 1.28 The sun has a radius of and approximates a...Ch. 1 - 1.29 A spherical interplanetary probe with a 30-cm...Ch. 1 - A spherical communications satellite, 2 m in...Ch. 1 - A long wire 0.7 mm in diameter with an emissivity...Ch. 1 - Wearing layers of clothing in cold weather is...Ch. 1 - A section of a composite wall with the dimensions...Ch. 1 - A section of a composite wall with the dimensions...Ch. 1 - Repeat Problem 1.35 but assume that instead of...Ch. 1 - 1.37 Mild steel nails were driven through a solid...Ch. 1 - Prob. 1.38PCh. 1 - 1.39 On a cold winter day, the outside wall of a...Ch. 1 - As a designer working for a major electric...Ch. 1 - 1.41 A heat exchanger wall consists of a copper...Ch. 1 - 1.43 A simple solar heater consists of a flat...Ch. 1 - A composite refrigerator wall is composed of 5 cm...Ch. 1 - An electronic device that internally generates 600...Ch. 1 - 1.47 A flat roof is modeled as a flat plate...Ch. 1 - A horizontal, 3-mm-thick flat-copper plate, 1-m...Ch. 1 - 1.49 A small oven with a surface area of is...Ch. 1 - A steam pipe 200 mm in diameter passes through a...Ch. 1 - 1.51 The inner wall of a rocket motor combustion...Ch. 1 - 1.52 A flat roof of a house absorbs a solar...Ch. 1 - Determine the power requirement of a soldering...Ch. 1 - 1.54 The soldering iron tip in Problem 1.53...Ch. 1 - Prob. 1.55PCh. 1 - A pipe carrying superheated steam in a basement at...Ch. 1 - Draw the thermal circuit for heat transfer through...Ch. 1 - 1.60 Two electric resistance heaters with a 20 cm...Ch. 1 - 1.63 Liquid oxygen (LOX) for the space shuttle is...Ch. 1 - The interior wall of a large, commercial walk-in...Ch. 1 - 1.67 In beauty salons and in homes, a ubiquitous...Ch. 1 - The heat transfer coefficient between a surface...Ch. 1 - The thermal conductivity of fibreglass insulation...Ch. 1 - 1.71 The thermal conductivity of silver at 212°F...Ch. 1 - 1.72 An ice chest (see sketch) is to constructed...Ch. 1 - Estimate the R-values for a 5-cm-thick fiberglass...Ch. 1 - A manufacturer in the United States wants to sell...Ch. 1 - Referring to Problem 1.74, how many kilograms of...Ch. 1 - 1.76 Explain a fundamental characteristic that...Ch. 1 - 1.77 Explain each in your own words. (a) What is...Ch. 1 - What are the important modes of heat transfer for...Ch. 1 - 1.79 Consider the cooling of (a) a personal...Ch. 1 - Describe and compare the modes of heat loss...Ch. 1 - A person wearing a heavy parka is standing in a...Ch. 1 - Discuss the modes of heat transfer that determine...
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Understanding Conduction and the Heat Equation; Author: The Efficient Engineer;https://www.youtube.com/watch?v=6jQsLAqrZGQ;License: Standard youtube license