The data shown in the accompanying table are From a tensile test of high-strength steel. The test specimen has a diameter of 0.505 in. and a gage length of 2.00 in. (see figure for Prob. 1.5-3). At fracture, the elongation between the gage marks is 0.12 in. and the minimum diameter is 0.42 in. Plot the conventional stress-strain curve for the steel and determine the proportional limit, modulus of elasticity (the slope of the initial part of thestress-strain curve), yield stress at 0.1% offset, ultimate stress, percent elongation in 2.00 in., and percent reduction in area. TENSILE-TEST DATA FOR PROB. L.5-7 Laid (lb) Elongation (in) 1000 0.0002 2000 0.0006 6000 0.0019 10,000 0.0033 12,000 0.0039 12,900 0.0041 13,400 0.0047 13,600 0.0054 13,800 0.0063 14,000 0.0090 14,400 0.0102 15,200 0.0130 16,800 0.0230 18,400 0.0336 20,000 0.0507 22,400 0.1108 22,600 Fracture

Mechanics of Materials (MindTap Course List)
9th Edition
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Barry J. Goodno, James M. Gere
Chapter8: Applications Of Plane Stress (pressure Vessels, Beams, And Combined Loadings)
Section: Chapter Questions
Problem 8.2.12P: Solve the preceding problem if the diameter is 480 mm, the pressure is 20 MPa, the yield stress in...
icon
Related questions
Question

The data shown in the accompanying table are From a tensile test of high-strength steel. The test specimen has a diameter of 0.505 in. and a gage length of 2.00 in. (see figure for Prob. 1.5-3). At fracture, the elongation between the gage marks is 0.12 in. and the minimum diameter is 0.42 in. Plot the conventional stress-strain curve for the steel and determine the proportional limit, modulus of elasticity (the slope of the initial part of the
stress-strain curve), yield stress at 0.1% offset, ultimate stress, percent elongation in 2.00 in., and percent reduction in area.

TENSILE-TEST DATA FOR PROB. L.5-7

Laid (lb) Elongation (in)
1000 0.0002
2000 0.0006
6000 0.0019
10,000 0.0033
12,000 0.0039
12,900 0.0041
13,400 0.0047
13,600 0.0054
13,800 0.0063
14,000 0.0090
14,400 0.0102
15,200 0.0130
16,800 0.0230
18,400 0.0336
20,000 0.0507
22,400 0.1108
22,600 Fracture

 

 

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 4 images

Blurred answer
Knowledge Booster
Types of Properties of Engineering Materials
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning