Fundamentals of Heat and Mass Transfer
Fundamentals of Heat and Mass Transfer
7th Edition
ISBN: 9780470501979
Author: Frank P. Incropera, David P. DeWitt, Theodore L. Bergman, Adrienne S. Lavine
Publisher: Wiley, John & Sons, Incorporated
bartleby

Videos

Textbook Question
Book Icon
Chapter 1, Problem 1.63P

A 50 mm × 45 mm × 20 mm cell phone chargerhas a surface temperature of T s = 33 ° C when plugged into an electrical wall outlet but not in use. Thesurface of the charger is of emissivity = 0.92 and issubject to a free convection heat transfer coefficientof h = 4 .5 W/m 2 K . The room air and wall temperatures arc T = 22 ° C and T s u r = 20 ° C , respectively. If electricity costs C = $ 0.18 /kW h , determine thedaily cost of leaving the charger plugged in when notin use.
Chapter 1, Problem 1.63P, A 50mm45mm20mm cell phone chargerhas a surface temperature of Ts=33C when plugged into an electrical

Blurred answer
Students have asked these similar questions
A long stainless-steel (AISI 316) steam pipe, with an inside diameter of 6.00 cm and an outside diameter of 8.00 cm, is covered with a layer of asbestos insulation (k = 0.150 W/m-K) 1.00 cm thick, which in turn is covered with foam insulation (k = 0.044 W/m-K) 6.00 cm thick. The inside surface temperature of the stainless-steel steam pipe is measured to be 250.0°C, while the outside surface of the foam is exposed to convection, T_inf = 25.0°C, h_inf = 15.0 W/m^2-K. • Draw and label a sketch of this system. Include dimensions, known temperatures, etc. • Draw and completely label the corresponding 1-D steady-state conduction resistor diagram. • Determine the heat transfer rate through the pipe per unit length. • Calculate the temperature at the asbestos/foam interface.
The interior of a refrigerator whose dimensions are 0.05 x 0.05 dam base area and 1.25 m high, must be kept at 4 °C. The refrigerator walls are constructed of two steel sheets (k= 35 kcal/h.m.°C) 3 mm thick, with 65 mm of material insulation (k=0.213 kcal/h.m.°C) between them. The film coefficient of the inner surface is 10 kcal/h.m².°C, while on the external surface it varies from 8 to 12.5 kcal/h.m².°C. Calculate: a) The power (in HP) of the refrigerator motor so that the heat flux removed from the inside the refrigerator maintain the specified temperature, in a kitchen whose temperature can vary from 21 to 36 °C; b) The temperatures of the inner and outer surfaces of the wall. Given 1 HP = 641.2 Kcal/h
Calculate the heat losses per unit length in a horizontal tube with an outside diameter of 15 cm, if its surface is kept at 400 K AND the surrounding air has a temperature of 300 K and a pressure of 1 bar.The properties of air at a pressure of 1 bar and a film temperature of 350 K are: In this case, v = 20.76 x 10-6 m2/s , α = 0.2983 x 10-4 m2/s, k = 0.03003 W/mK, Pr = 0.697, β = 2.86 x 10-3 K-1

Chapter 1 Solutions

Fundamentals of Heat and Mass Transfer

Ch. 1 - The heat flux that is applied to one face of a...Ch. 1 - An inexpensive food and beverage container is...Ch. 1 - What is the thickness required of a masonry wall...Ch. 1 - A wall is made from an inhomogeneous...Ch. 1 - The 5-mm-thick bottom of a 200-mm-diameter panmay...Ch. 1 - A square silicon chip (k=150W/mK) is of width...Ch. 1 - For a boiling process such as shown in Figure 1.5...Ch. 1 - You’ve experienced convection cooling if you’ve...Ch. 1 - Air at 40°C flows over a long, 25-mm-diameter...Ch. 1 - A wall has inner and outer surface temperatures of...Ch. 1 - An electric resistance heater is embedded in a...Ch. 1 - The free convection heat transfer coefficient on a...Ch. 1 - A transmission case measures W=0.30m on a sideand...Ch. 1 - A cartridge electrical heater is shaped as a...Ch. 1 - A common procedure for measuring the velocity of...Ch. 1 - A square isothermal chip is of width w=5mm on...Ch. 1 - The temperature controller for a clothes dryer...Ch. 1 - An overhead 25-m-long, uninsulated industrial...Ch. 1 - Under conditions for which the same room...Ch. 1 - A spherical interplanetary probe of 0.5-m diameter...Ch. 1 - An instrumentation package has a spherical outer...Ch. 1 - Consider the conditions of Problem 1.22. However,...Ch. 1 - If TsTsur in Equation 1.9, the radiation heat...Ch. 1 - A vacuum system, as used ¡n sputtering...Ch. 1 - An electrical resistor is connected to a battery,...Ch. 1 - Pressurized water (pin=10bar,Tin=110C) enters...Ch. 1 - Consider the tube and inlet conditions of Problem...Ch. 1 - An internally reversible refrigerator has a...Ch. 1 - A household refrigerator operates with cold-...Ch. 1 - Chips of width L=15mm on a side are mounted to...Ch. 1 - Consider the transmission case of Problem 1...Ch. 1 - One method for growing thin silicon sheets for...Ch. 1 - Heat is transferred by radiation and convection...Ch. 1 - Radioactive wastes are packed in a long,...Ch. 1 - An aluminum plate 4 mm thick is mounted in a...Ch. 1 - A blood warmer is to be used during the...Ch. 1 - Consider a carton of milk that is refrigerated at...Ch. 1 - Prob. 1.48PCh. 1 - Liquid oxygen, which has a boiling into of 90 K...Ch. 1 - The emissivity of galvanized steel sheet, a...Ch. 1 - Three electric resistance heaters of length...Ch. 1 - A hair dryer may be idealized as a circular duct...Ch. 1 - In one stage of an annealing process, 304...Ch. 1 - Convection ovens operate on the principle of...Ch. 1 - Annealing, an important step ¡n semiconductor...Ch. 1 - In the thermal processing of semiconductor...Ch. 1 - A furnace tor processing semiconductor materials...Ch. 1 - Prob. 1.58PCh. 1 - Consider the wind turbine of Example 1.3. To...Ch. 1 - Consider the conducting rod of Example 1.4...Ch. 1 - A long bus bar (cylindrical rod used for making...Ch. 1 - A 50mm45mm20mm cell phone chargerhas a surface...Ch. 1 - A spherical, stainless steel (AISI 302) canister...Ch. 1 - A freezer compartment is covered with a...Ch. 1 - A vertical slab of Wood’s metal is joined to a...Ch. 1 - A photovoltaic panel of dimension 2m4m isinstalled...Ch. 1 - Following the hot vacuum forming of a...Ch. 1 - Prob. 1.69PCh. 1 - A computer consists of an array of five printed...Ch. 1 - Prob. 1.71PCh. 1 - The roof of a car in a parking lot absorbs a solar...Ch. 1 - Consider the conditions of Problem 1.22,but the...Ch. 1 - Most of the energy we consume as food ¡s converted...Ch. 1 - Prob. 1.75PCh. 1 - The wall of an oven used to cure plastic parts is...Ch. 1 - An experiment to determine the convection...Ch. 1 - A thin electrical heating element provides a...Ch. 1 - A rectangular forced air healing duct is suspended...Ch. 1 - Consider the steam pipe of Example 1.2. The...Ch. 1 - During its manufacture, plate glass at 600°C is...Ch. 1 - The curing press of Example 1.9 involves exposure...Ch. 1 - The diameter and surface emissivity of an...Ch. 1 - Prob. 1.84PCh. 1 - A solar flux of 700W/m2K is incident on a...Ch. 1 - In considering the following problems involving...
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Heat Transfer – Conduction, Convection and Radiation; Author: NG Science;https://www.youtube.com/watch?v=Me60Ti0E_rY;License: Standard youtube license