Fundamentals of Heat and Mass Transfer
Fundamentals of Heat and Mass Transfer
7th Edition
ISBN: 9780470501979
Author: Frank P. Incropera, David P. DeWitt, Theodore L. Bergman, Adrienne S. Lavine
Publisher: Wiley, John & Sons, Incorporated
bartleby

Videos

Textbook Question
Chapter 1, Problem 1.65P

A freezer compartment is covered with a 2-mm-thicklayer of frost at the time it malfunctions. If thecompartment is in ambient air at 20°C and a coefficientof h = 2 W/m 2 K characterizes heat transfer by naturalconvection from the exposed surface of the layer, estimate the time required to completely melt the frost.The frost may be assumed to have a mass density of 700 Kg/m 3 and a latent heat of fusion of 334 kJ/kg.

Blurred answer
Students have asked these similar questions
Consider a cold aluminum canned drink that is initially at a uniform temperature of 4°C. The can is 12.5 cm high and has a diameter of 6 cm. If the combined convection/radiation heat transfer coefficient between the can and the surrounding air at 25°C is 10 W/m2 · °C, determine how long it will take for the average temperature of the drink to rise to 15°C. In an effort to slow down the warming of the cold drink, a person puts the can in a perfectly fitting 1-cm-thick cylindrical rubber insulator (k = 0.13 W/m · °C). Now how long will it take for the average temperature of the drink to rise to 15°C? Assume the top of the can is not covered.
An average man has abody surface area of 1.8m2 and a skin temperature of 33degrees celcius .The convection heat transfer coefficient for a clothed person walking in still air is expressed as {h,8.6V^0.53}FOR 0.5<v<2m/s,where V is the walking velocityin m/s.Assuming the average surface temperature of the clothed person to be 30degrees celcius, determine the rate of heat loss from an average man walking in still air at 10degrees celcius by convectionat a walking velocity of  (a)0.5m/s (b)1.0m/s (c)1.5m/s (d)2.0m/s
A long 10-cm-diameter steam pipe whose external surface temperature is 110°C passes through some open area that is not protected against the winds . Determine the rate of heat loss from the pipe per unit of its length when the air is at 1 atm pressure and 10°C and the wind is blowing across the pipe at a velocity of 8 m/s.

Chapter 1 Solutions

Fundamentals of Heat and Mass Transfer

Ch. 1 - The heat flux that is applied to one face of a...Ch. 1 - An inexpensive food and beverage container is...Ch. 1 - What is the thickness required of a masonry wall...Ch. 1 - A wall is made from an inhomogeneous...Ch. 1 - The 5-mm-thick bottom of a 200-mm-diameter panmay...Ch. 1 - A square silicon chip (k=150W/mK) is of width...Ch. 1 - For a boiling process such as shown in Figure 1.5...Ch. 1 - You’ve experienced convection cooling if you’ve...Ch. 1 - Air at 40°C flows over a long, 25-mm-diameter...Ch. 1 - A wall has inner and outer surface temperatures of...Ch. 1 - An electric resistance heater is embedded in a...Ch. 1 - The free convection heat transfer coefficient on a...Ch. 1 - A transmission case measures W=0.30m on a sideand...Ch. 1 - A cartridge electrical heater is shaped as a...Ch. 1 - A common procedure for measuring the velocity of...Ch. 1 - A square isothermal chip is of width w=5mm on...Ch. 1 - The temperature controller for a clothes dryer...Ch. 1 - An overhead 25-m-long, uninsulated industrial...Ch. 1 - Under conditions for which the same room...Ch. 1 - A spherical interplanetary probe of 0.5-m diameter...Ch. 1 - An instrumentation package has a spherical outer...Ch. 1 - Consider the conditions of Problem 1.22. However,...Ch. 1 - If TsTsur in Equation 1.9, the radiation heat...Ch. 1 - A vacuum system, as used ¡n sputtering...Ch. 1 - An electrical resistor is connected to a battery,...Ch. 1 - Pressurized water (pin=10bar,Tin=110C) enters...Ch. 1 - Consider the tube and inlet conditions of Problem...Ch. 1 - An internally reversible refrigerator has a...Ch. 1 - A household refrigerator operates with cold-...Ch. 1 - Chips of width L=15mm on a side are mounted to...Ch. 1 - Consider the transmission case of Problem 1...Ch. 1 - One method for growing thin silicon sheets for...Ch. 1 - Heat is transferred by radiation and convection...Ch. 1 - Radioactive wastes are packed in a long,...Ch. 1 - An aluminum plate 4 mm thick is mounted in a...Ch. 1 - A blood warmer is to be used during the...Ch. 1 - Consider a carton of milk that is refrigerated at...Ch. 1 - Prob. 1.48PCh. 1 - Liquid oxygen, which has a boiling into of 90 K...Ch. 1 - The emissivity of galvanized steel sheet, a...Ch. 1 - Three electric resistance heaters of length...Ch. 1 - A hair dryer may be idealized as a circular duct...Ch. 1 - In one stage of an annealing process, 304...Ch. 1 - Convection ovens operate on the principle of...Ch. 1 - Annealing, an important step ¡n semiconductor...Ch. 1 - In the thermal processing of semiconductor...Ch. 1 - A furnace tor processing semiconductor materials...Ch. 1 - Prob. 1.58PCh. 1 - Consider the wind turbine of Example 1.3. To...Ch. 1 - Consider the conducting rod of Example 1.4...Ch. 1 - A long bus bar (cylindrical rod used for making...Ch. 1 - A 50mm45mm20mm cell phone chargerhas a surface...Ch. 1 - A spherical, stainless steel (AISI 302) canister...Ch. 1 - A freezer compartment is covered with a...Ch. 1 - A vertical slab of Wood’s metal is joined to a...Ch. 1 - A photovoltaic panel of dimension 2m4m isinstalled...Ch. 1 - Following the hot vacuum forming of a...Ch. 1 - Prob. 1.69PCh. 1 - A computer consists of an array of five printed...Ch. 1 - Prob. 1.71PCh. 1 - The roof of a car in a parking lot absorbs a solar...Ch. 1 - Consider the conditions of Problem 1.22,but the...Ch. 1 - Most of the energy we consume as food ¡s converted...Ch. 1 - Prob. 1.75PCh. 1 - The wall of an oven used to cure plastic parts is...Ch. 1 - An experiment to determine the convection...Ch. 1 - A thin electrical heating element provides a...Ch. 1 - A rectangular forced air healing duct is suspended...Ch. 1 - Consider the steam pipe of Example 1.2. The...Ch. 1 - During its manufacture, plate glass at 600°C is...Ch. 1 - The curing press of Example 1.9 involves exposure...Ch. 1 - The diameter and surface emissivity of an...Ch. 1 - Prob. 1.84PCh. 1 - A solar flux of 700W/m2K is incident on a...Ch. 1 - In considering the following problems involving...
Knowledge Booster
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • An average man has a body surface area of 1.8 m2 and a skin temperature of 33°C. The convection heat transfer coefficient for a clothed person walking in still air is expressed as h = 8.6V 0.53 for 0.5 < V < 2 m/s, where V is the walking velocity in m/s. Assuming the average surface temperature of the clothed person to be 30°C, determine the rate of heat loss from an average man walking in still air at 10°C by convection at a walking velocity of (a) 0.5 m/s, (b) 1.0 m/s, (c) 1.5 m/s, and (d) 2.0 m/s.
    A person puts a few apples into the freezer at 15°C cool them quickly for guestswho are about to arrive. Initially, the apples are at a uniform temperature of 20°C,and the heat transfer coefficient on the surfaces is 8 W/m2·K. Treating the apples as9-cm-diameter spheres and taking their properties to be 840 kg/m3, Cp 3.81 kJ/kg·K, k = 0.418 W/m·K, and α =10-7 m2/s, determine the center and surface temperatures of the apples in 1 h. Also, determine the amount of heat transfer from each apple. Solve this problem using analytical one-term approximation method (notthe Heisler charts). Answer: Center: 11.2 ℃, Surface: 2.7 ℃, heat transfer: 17.2 kJ
    A 40-cm-long, 800-W electric resistance heating element with diameter 0.5 cm and surface temperature 120°C is immersed in 75 kg of water initially at 20°C. Determine how long it will take for this heater to raise the water temperature to 80°C. Also, determine the convection heat transfer coefficients at the beginning and at the end of the heating process.
  • Hot engine oil at 150°C is flowing in parallel over a flat plate at a velocity of 3.30 m/s. Surface temperature of the 1.800-m long flat plate is constant at 50°C. The properties of engine oil at Tf  = (150°C + 50°C)/2 = 100°C are k = 0.1367 W/m∙K, v = 2.046 × 10−5 m2/s, Pr = 279.1. Determine the local convection heat transfer coefficient at 0.200 m from the leading edge and the average convection heat transfer coefficient.   The local convection heat transfer coefficient at 0.200 m from the leading edge is ___ W/m2·K. The average convection heat transfer coefficient is ___ W/m2·K.
    A heating system is to be designed to keep the wings of an aircraft cruising at a velocity of 900 km/h above freezing temperatures during flight at 12,200-m altitude where the standard atmospheric conditions are 55.4°C and 18.8 kPa. Approximating the wing as a cylinder the elliptical cross section whose minor axis is 30 cm and disregarding radiation, determine the average convection heat transfer coefficient on the wing surface and the average rate of heat transfer per unit surface area.
    A cylindrical fuel rod of 2 cm in diameter is encased in a concentric tube and cooled by water. The fuel generates heat uniformly at a rate of 150 MW/m3. The convection heat transfer coefficient on the fuel rod is 5000 W/m2∙K, and the average temperature of the cooling water, sufficiently far from the fuel rod, is 70°C. Determine the surface temperature of the fuel rod and discuss whether the value of the given convection heat transfer coefficient on the fuel rod is reasonable.
    • SEE MORE QUESTIONS
    Recommended textbooks for you
  • Principles of Heat Transfer (Activate Learning wi...
    Mechanical Engineering
    ISBN:9781305387102
    Author:Kreith, Frank; Manglik, Raj M.
    Publisher:Cengage Learning
  • Principles of Heat Transfer (Activate Learning wi...
    Mechanical Engineering
    ISBN:9781305387102
    Author:Kreith, Frank; Manglik, Raj M.
    Publisher:Cengage Learning
    Heat Transfer – Conduction, Convection and Radiation; Author: NG Science;https://www.youtube.com/watch?v=Me60Ti0E_rY;License: Standard youtube license