Fundamentals of Heat and Mass Transfer
Fundamentals of Heat and Mass Transfer
7th Edition
ISBN: 9780470501979
Author: Frank P. Incropera, David P. DeWitt, Theodore L. Bergman, Adrienne S. Lavine
Publisher: Wiley, John & Sons, Incorporated
bartleby

Videos

Textbook Question
Book Icon
Chapter 1, Problem 1.77P

An experiment to determine the convection coefficientassociated with airflow over the surface of a thickstainless steel casting involves the insertion of thermocouples into the casting at distances of 10 and 20 mm from the surface along a hypothetical line normal to thesurface. The steel has a thermal conductivity of 15 W/m K . If the thermocouples measure temperaturesof 50 and 40°C in the steel when the air temperature is 100°C, what is the convection coefficient?

Blurred answer
Students have asked these similar questions
Air at 25 ° C blows over the hot steel plate whose surface temperature is maintained at 150 ° C. The plates are 50 cm x 40 cm in dimensions and 2.5 cm thick. The convection heat transfer coefficient on the upper surface is 40 W / (m² ° C). The thermal conductivity of steel is 45 W / (m ° C). Calculate the hourly heat loss from the plate surface. a. heat loss per hour = Answer kJ. b. If the reverse side surface temperature is maintained, determine the hourly heat loss occurring = Answer kJ. Air at 25 ° C blows over the hot steel plate whose surface temperature is maintained at 150 ° C. The plates are 50 cm x 40 cm in dimensions and 2.5 cm thick. The convection heat transfer coefficient on the upper surface is 40 W / (m² ° C). The thermal conductivity of steel is 45 W / (m ° C). Calculate the hourly heat loss from the plate surface. a. heat loss per hour = Answer kJ. b. If the reverse side surface temperature is maintained, determine the hourly heat loss occurring = Answer kJ.
During a cold winter day, wind at 55 km/h is blowing parallel to a 4m high and 10m long wall of a house. If the air outside is at 5 degrees Celsius and the surface temperature of the wall is 12 degrees Celsius , determine the rate of heat loss from the wall by convection. What would your answer be if the wind velocity has doubled?   From Table A-1:thermal conductivity, k = 0.0246 W/m degrees Celsiusviscosity, v = 1.4 x 10^-5 m^2/sPrandtl no. Pr = 0.717
Air at 25 ° C blows over the hot steel plate whose surface temperature is maintained at 150 ° C. The plates are 50 cm x 40 cm in dimensions and 2.5 cm thick. The convection heat transfer coefficient on the upper surface is 20 W / (m² ° C). The thermal conductivity of steel is 45 W / (m ° C). Calculate the hourly heat loss from the plate surface. a. heat loss per hour = Answer kJ. b. If the reverse side surface temperature is maintained, determine the hourly heat loss occurring = Answer kJ.

Chapter 1 Solutions

Fundamentals of Heat and Mass Transfer

Ch. 1 - The heat flux that is applied to one face of a...Ch. 1 - An inexpensive food and beverage container is...Ch. 1 - What is the thickness required of a masonry wall...Ch. 1 - A wall is made from an inhomogeneous...Ch. 1 - The 5-mm-thick bottom of a 200-mm-diameter panmay...Ch. 1 - A square silicon chip (k=150W/mK) is of width...Ch. 1 - For a boiling process such as shown in Figure 1.5...Ch. 1 - You’ve experienced convection cooling if you’ve...Ch. 1 - Air at 40°C flows over a long, 25-mm-diameter...Ch. 1 - A wall has inner and outer surface temperatures of...Ch. 1 - An electric resistance heater is embedded in a...Ch. 1 - The free convection heat transfer coefficient on a...Ch. 1 - A transmission case measures W=0.30m on a sideand...Ch. 1 - A cartridge electrical heater is shaped as a...Ch. 1 - A common procedure for measuring the velocity of...Ch. 1 - A square isothermal chip is of width w=5mm on...Ch. 1 - The temperature controller for a clothes dryer...Ch. 1 - An overhead 25-m-long, uninsulated industrial...Ch. 1 - Under conditions for which the same room...Ch. 1 - A spherical interplanetary probe of 0.5-m diameter...Ch. 1 - An instrumentation package has a spherical outer...Ch. 1 - Consider the conditions of Problem 1.22. However,...Ch. 1 - If TsTsur in Equation 1.9, the radiation heat...Ch. 1 - A vacuum system, as used ¡n sputtering...Ch. 1 - An electrical resistor is connected to a battery,...Ch. 1 - Pressurized water (pin=10bar,Tin=110C) enters...Ch. 1 - Consider the tube and inlet conditions of Problem...Ch. 1 - An internally reversible refrigerator has a...Ch. 1 - A household refrigerator operates with cold-...Ch. 1 - Chips of width L=15mm on a side are mounted to...Ch. 1 - Consider the transmission case of Problem 1...Ch. 1 - One method for growing thin silicon sheets for...Ch. 1 - Heat is transferred by radiation and convection...Ch. 1 - Radioactive wastes are packed in a long,...Ch. 1 - An aluminum plate 4 mm thick is mounted in a...Ch. 1 - A blood warmer is to be used during the...Ch. 1 - Consider a carton of milk that is refrigerated at...Ch. 1 - Prob. 1.48PCh. 1 - Liquid oxygen, which has a boiling into of 90 K...Ch. 1 - The emissivity of galvanized steel sheet, a...Ch. 1 - Three electric resistance heaters of length...Ch. 1 - A hair dryer may be idealized as a circular duct...Ch. 1 - In one stage of an annealing process, 304...Ch. 1 - Convection ovens operate on the principle of...Ch. 1 - Annealing, an important step ¡n semiconductor...Ch. 1 - In the thermal processing of semiconductor...Ch. 1 - A furnace tor processing semiconductor materials...Ch. 1 - Prob. 1.58PCh. 1 - Consider the wind turbine of Example 1.3. To...Ch. 1 - Consider the conducting rod of Example 1.4...Ch. 1 - A long bus bar (cylindrical rod used for making...Ch. 1 - A 50mm45mm20mm cell phone chargerhas a surface...Ch. 1 - A spherical, stainless steel (AISI 302) canister...Ch. 1 - A freezer compartment is covered with a...Ch. 1 - A vertical slab of Wood’s metal is joined to a...Ch. 1 - A photovoltaic panel of dimension 2m4m isinstalled...Ch. 1 - Following the hot vacuum forming of a...Ch. 1 - Prob. 1.69PCh. 1 - A computer consists of an array of five printed...Ch. 1 - Prob. 1.71PCh. 1 - The roof of a car in a parking lot absorbs a solar...Ch. 1 - Consider the conditions of Problem 1.22,but the...Ch. 1 - Most of the energy we consume as food ¡s converted...Ch. 1 - Prob. 1.75PCh. 1 - The wall of an oven used to cure plastic parts is...Ch. 1 - An experiment to determine the convection...Ch. 1 - A thin electrical heating element provides a...Ch. 1 - A rectangular forced air healing duct is suspended...Ch. 1 - Consider the steam pipe of Example 1.2. The...Ch. 1 - During its manufacture, plate glass at 600°C is...Ch. 1 - The curing press of Example 1.9 involves exposure...Ch. 1 - The diameter and surface emissivity of an...Ch. 1 - Prob. 1.84PCh. 1 - A solar flux of 700W/m2K is incident on a...Ch. 1 - In considering the following problems involving...
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Heat Transfer – Conduction, Convection and Radiation; Author: NG Science;https://www.youtube.com/watch?v=Me60Ti0E_rY;License: Standard youtube license