Fundamentals of Heat and Mass Transfer
Fundamentals of Heat and Mass Transfer
7th Edition
ISBN: 9780470501979
Author: Frank P. Incropera, David P. DeWitt, Theodore L. Bergman, Adrienne S. Lavine
Publisher: Wiley, John & Sons, Incorporated
bartleby

Videos

Textbook Question
Chapter 1, Problem 1.79P

A rectangular forced air healing duct is suspended fromthe ceiling of a basement whose air and walls are at atemperature of T = T s u r = 5 °C . The duct is 15 m long, and its cross section is 350 mm × 200 mm .
(a) For an uninsulated duct whose average surface temperature is 50°C, estimate the rate of heat loss from the duct. The surface emissivity and convectioncoefficient are approximately 0.5 and 4 W/m 2 K, respectively.
(b) If heated air enters the duct at 58°C and a velocity of4 m/s and the heat loss corresponds to the result ofpart (a), what is the outlet temperature? The densityand specific heat of the air may be assumed to be ρ = 1 .10 kg/m 3 and c p = 1008 J/kg K , respectively.

Blurred answer
Students have asked these similar questions
Air (1 atm) enters into a 5-cm-diameter circular tube at 20°C with an average velocity of 5 m/s. The tube wall is maintained at a constant surface temperature of 160°C, and the outlet mean temperature is 80°C. Estimate the length of the tube.
Example 4: Hot air at atmospheric pressure and 80°C enters an 8–m-long uninsulated square duct of cross section 0.2 m  0.2 m that passes through the attic of a house at a rate of 0.15 m3/s (Figure). The duct is observed to be nearly isothermal at 60°C. Determine the exit temperature of the air and the rate of heat loss from the duct to the attic space.
Cold air at 5°C enters a l2-cm-diameter, 20-m-long isothermal pipe at a velocity of 2.5 m/s and leaves at 19°C. Estimate the surface temperature of the pipe.

Chapter 1 Solutions

Fundamentals of Heat and Mass Transfer

Ch. 1 - The heat flux that is applied to one face of a...Ch. 1 - An inexpensive food and beverage container is...Ch. 1 - What is the thickness required of a masonry wall...Ch. 1 - A wall is made from an inhomogeneous...Ch. 1 - The 5-mm-thick bottom of a 200-mm-diameter panmay...Ch. 1 - A square silicon chip (k=150W/mK) is of width...Ch. 1 - For a boiling process such as shown in Figure 1.5...Ch. 1 - You’ve experienced convection cooling if you’ve...Ch. 1 - Air at 40°C flows over a long, 25-mm-diameter...Ch. 1 - A wall has inner and outer surface temperatures of...Ch. 1 - An electric resistance heater is embedded in a...Ch. 1 - The free convection heat transfer coefficient on a...Ch. 1 - A transmission case measures W=0.30m on a sideand...Ch. 1 - A cartridge electrical heater is shaped as a...Ch. 1 - A common procedure for measuring the velocity of...Ch. 1 - A square isothermal chip is of width w=5mm on...Ch. 1 - The temperature controller for a clothes dryer...Ch. 1 - An overhead 25-m-long, uninsulated industrial...Ch. 1 - Under conditions for which the same room...Ch. 1 - A spherical interplanetary probe of 0.5-m diameter...Ch. 1 - An instrumentation package has a spherical outer...Ch. 1 - Consider the conditions of Problem 1.22. However,...Ch. 1 - If TsTsur in Equation 1.9, the radiation heat...Ch. 1 - A vacuum system, as used ¡n sputtering...Ch. 1 - An electrical resistor is connected to a battery,...Ch. 1 - Pressurized water (pin=10bar,Tin=110C) enters...Ch. 1 - Consider the tube and inlet conditions of Problem...Ch. 1 - An internally reversible refrigerator has a...Ch. 1 - A household refrigerator operates with cold-...Ch. 1 - Chips of width L=15mm on a side are mounted to...Ch. 1 - Consider the transmission case of Problem 1...Ch. 1 - One method for growing thin silicon sheets for...Ch. 1 - Heat is transferred by radiation and convection...Ch. 1 - Radioactive wastes are packed in a long,...Ch. 1 - An aluminum plate 4 mm thick is mounted in a...Ch. 1 - A blood warmer is to be used during the...Ch. 1 - Consider a carton of milk that is refrigerated at...Ch. 1 - Prob. 1.48PCh. 1 - Liquid oxygen, which has a boiling into of 90 K...Ch. 1 - The emissivity of galvanized steel sheet, a...Ch. 1 - Three electric resistance heaters of length...Ch. 1 - A hair dryer may be idealized as a circular duct...Ch. 1 - In one stage of an annealing process, 304...Ch. 1 - Convection ovens operate on the principle of...Ch. 1 - Annealing, an important step ¡n semiconductor...Ch. 1 - In the thermal processing of semiconductor...Ch. 1 - A furnace tor processing semiconductor materials...Ch. 1 - Prob. 1.58PCh. 1 - Consider the wind turbine of Example 1.3. To...Ch. 1 - Consider the conducting rod of Example 1.4...Ch. 1 - A long bus bar (cylindrical rod used for making...Ch. 1 - A 50mm45mm20mm cell phone chargerhas a surface...Ch. 1 - A spherical, stainless steel (AISI 302) canister...Ch. 1 - A freezer compartment is covered with a...Ch. 1 - A vertical slab of Wood’s metal is joined to a...Ch. 1 - A photovoltaic panel of dimension 2m4m isinstalled...Ch. 1 - Following the hot vacuum forming of a...Ch. 1 - Prob. 1.69PCh. 1 - A computer consists of an array of five printed...Ch. 1 - Prob. 1.71PCh. 1 - The roof of a car in a parking lot absorbs a solar...Ch. 1 - Consider the conditions of Problem 1.22,but the...Ch. 1 - Most of the energy we consume as food ¡s converted...Ch. 1 - Prob. 1.75PCh. 1 - The wall of an oven used to cure plastic parts is...Ch. 1 - An experiment to determine the convection...Ch. 1 - A thin electrical heating element provides a...Ch. 1 - A rectangular forced air healing duct is suspended...Ch. 1 - Consider the steam pipe of Example 1.2. The...Ch. 1 - During its manufacture, plate glass at 600°C is...Ch. 1 - The curing press of Example 1.9 involves exposure...Ch. 1 - The diameter and surface emissivity of an...Ch. 1 - Prob. 1.84PCh. 1 - A solar flux of 700W/m2K is incident on a...Ch. 1 - In considering the following problems involving...
Knowledge Booster
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • 150 L/s of hot air at 80 degrees Ceelsius enters an 8m long uninsulated square duct of cross-section 20 cm x 20 cm and leaves at 70 degree Celsius. The outer surface temperature of duct is observed to be constant. Use Colburn Equation.
    Exhaust gases at 1 atm and 300°C are used to preheat water in an industrial facility by passing them over a bank of tubes through which water is flowing at a rate of 6 kg/s. The mean tube wall temperature is 80°C. Exhaust gases approach the tube bank in normal direction at 4.5 m/s. The outer diameter of the tubes is 0.035 m, and the tubes are arranged in-line with longitudinal and transverse pitches of SL = ST = 0.09 m. There are 16 rows in the flow direction with eight tubes in each row. Assume the air properties at 250°C and 1 atm. The air properties at the assumed mean temperature of 250°C and 1 atm are k = 0.04104 W/m·K                    ρ = 0.6746 kg/m3cp =1.033 kJ/kg·K                       Pr = 0.6946μ = 2.76 × 10−5 kg/m·s                   Prs = Pr@Ts = 80°C = 0.7154   The density of air at the inlet temperature of 300°C (for use in the mass flow rate calculation at the inlet) is ρi = 0.6158 kg/m3. The specific heat of water at 80°C is 4.197 kJ/kg·°C. Determine the temperature…
    Exhaust gases at 1 atm and 300°C are used to preheat water in an industrial facility by passing them over a bank of tubes through which water is flowing at a rate of 6 kg/s. The mean tube wall temperature is 80°C. Exhaust gases approach the tube bank in normal direction at 4.5 m/s. The outer diameter of the tubes is 0.035 m, and the tubes are arranged in-line with longitudinal and transverse pitches of SL = ST = 0.09 m. There are 16 rows in the flow direction with eight tubes in each row. Assume the air properties at 250°C and 1 atm. The air properties at the assumed mean temperature of 250°C and 1 atm are k = 0.04104 W/m·K                    ρ = 0.6746 kg/m3cp =1.033 kJ/kg·K                       Pr = 0.6946μ = 2.76 × 10−5 kg/m·s                   Prs = Pr@Ts = 80°C = 0.7154   The density of air at the inlet temperature of 300°C (for use in the mass flow rate calculation at the inlet) is ρi = 0.6158 kg/m3. The specific heat of water at 80°C is 4.197 kJ/kg·°C.    Determine pressure…
    Recommended textbooks for you
  • Principles of Heat Transfer (Activate Learning wi...
    Mechanical Engineering
    ISBN:9781305387102
    Author:Kreith, Frank; Manglik, Raj M.
    Publisher:Cengage Learning
  • Principles of Heat Transfer (Activate Learning wi...
    Mechanical Engineering
    ISBN:9781305387102
    Author:Kreith, Frank; Manglik, Raj M.
    Publisher:Cengage Learning
    Heat Transfer – Conduction, Convection and Radiation; Author: NG Science;https://www.youtube.com/watch?v=Me60Ti0E_rY;License: Standard youtube license