COLLEGE PHYSICS,VOL.2
COLLEGE PHYSICS,VOL.2
3rd Edition
ISBN: 9780321908780
Author: Knight
Publisher: PEARSON
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Chapter 1, Problem 3P

A jogger running east at a steady pace suddenly develops a cramp. He is lucky: A westbound bus is sitting at a bus stop just ahead. He gets on the bus and enjoys a quick ride home. Use the particle model to draw a motion diagram of the jogger for the entire motion described here. Number the dots in order, starting with zero.

Blurred answer
Students have asked these similar questions
A man rides a bike along a straight road for 5 min, then has a flat tire. He stops for 5 min to repair the flat, but can’t fix it. He walks the rest of the way, which takes him another 10 min. Use the particle model to draw a motion diagram of the man for the entire motion described here. Number the dots in order, starting with zero.
Draw motion diagrams for (a) an object moving to the right at constant speed, (b) an object moving to the right and speeding up at a constant rate, (c) an object moving to the right and slowing down at a constant rate, (d) anobject moving to the left and speeding up at a constant rate, and (e) an object moving to the left and slowing down at a constant rate. (f) How would your drawings change if the changes in speed were not uniform, that is, if the speed were not changing at a constant rate?
The equation for the best-fit line for the velocity vs. time graph for a particle is v=5.1t+7.9, What is the acceleration of the particle? All the quantities are measured in standard units. Do not include units in your answers and keep one decimal place.

Chapter 1 Solutions

COLLEGE PHYSICS,VOL.2

Ch. 1 - A softball player hits the ball and starts running...Ch. 1 - A child is sledding on a smooth, level patch of...Ch. 1 - A skydiver jumps out of an airplane. Her speed...Ch. 1 - Your roommate drops a tennis ball from a...Ch. 1 - A car is driving north at a steady speed. It makes...Ch. 1 - A toy car rolls down a ramp, then across a smooth,...Ch. 1 - Density is the ratio of an object's mass to its...Ch. 1 - A student walks 1.0 mi west and then 1.0 mi north....Ch. 1 - You throw a rock upward. The rock is moving...Ch. 1 - Which of the following motions could be described...Ch. 1 - Which of the following motions is described by the...Ch. 1 - A bird flies 3.0 km due west and then 2.0 km due...Ch. 1 - Weddell seals make holes in sea ice so that they...Ch. 1 - A bird flies 3.0 km due west and then 2.0 km due...Ch. 1 - A woman walks briskly at 2.00 m/s. How much time...Ch. 1 - Compute 3.24 m + 0.532 m to the correct number of...Ch. 1 - A rectangle has length 3.24 m and height 0.532 m....Ch. 1 - The earth formed 4.57 109 years ago. What is this...Ch. 1 - Prob. 29MCQCh. 1 - A car skids to a halt to avoid hitting an object...Ch. 1 - A man rides a bike along a straight road for 5...Ch. 1 - A jogger running east at a steady pace suddenly...Ch. 1 - Figure P1.4 shows Sue along the straight-line path...Ch. 1 - Keira starts at position x = 23 m along a...Ch. 1 - A car travels along a straight east-west road. A...Ch. 1 - Foraging bees often move in straight lines away...Ch. 1 - A security guard walks at a steady pace, traveling...Ch. 1 - List the following items in order of decreasing...Ch. 1 - Figure P1.10 shows the motion diagram for a horse...Ch. 1 - It takes Harry 35 s to walk from x = 12 m to x = ...Ch. 1 - A dog trots from x = 12 m to x = 3 m in 10 s....Ch. 1 - A ball rolling along a straight line with velocity...Ch. 1 - Convert the following to SI units: a. 9.12 s b....Ch. 1 - Convert the following to SI units: a. 8.0 in b. 66...Ch. 1 - Convert the following to SI units: a. 1.0 hour b....Ch. 1 - How many significant figures does each of the...Ch. 1 - How many significant figures does each of the...Ch. 1 - Compute the following numbers to three significant...Ch. 1 - lf you make multiple measurements of your height,...Ch. 1 - The Empire State Building has a height of 1250 ft....Ch. 1 - Blades of grass grow from the bottom, so, as...Ch. 1 - Estimate the average speed, in m/s, with which the...Ch. 1 - Carol and Robin share a house. To get to work,...Ch. 1 - Loveland, Colorado, is 18 km due south of Fort...Ch. 1 - Joe and Max shake hands and say goodbye. Joe walks...Ch. 1 - A city has streets laid out in a square grid, with...Ch. 1 - A butterfly flies from the top of a tree in the...Ch. 1 - A garden has a circular path of radius 50 m. John...Ch. 1 - A circular test track for cars in England has a...Ch. 1 - Migrating geese tend to travel at approximately...Ch. 1 - Black vultures excel at gliding flight; they can...Ch. 1 - A hiker walks 25 north of east for 200m. How far...Ch. 1 - A hiker is climbing a steep 10 slope. Her...Ch. 1 - A ball on a porch rolls 60 cm to the porch's edge,...Ch. 1 - A kicker punts a football from the very center of...Ch. 1 - A squirrel completing a short glide travels in a...Ch. 1 - A squirrel in a typical long glide covers a...Ch. 1 - Problems 39 through 45 are motion problems similar...Ch. 1 - Problems 39 through 45 are motion problems similar...Ch. 1 - Problems 39 through 45 are motion problems similar...Ch. 1 - Problems 39 through 45 are motion problems similar...Ch. 1 - Problems 39 through 45 are motion problems similar...Ch. 1 - Problems 39 through 45 are motion problems similar...Ch. 1 - Problems 39 through 45 are motion problems similar...Ch. 1 - Problems 46 through 50 show a motion diagram. For...Ch. 1 - Problems 46 through 50 show a motion diagram. For...Ch. 1 - Problems 46 through 50 show a motion diagram. For...Ch. 1 - Problems 46 through 50 show a motion diagram. For...Ch. 1 - Problems 46 through 50 show a motion diagram. For...Ch. 1 - Prob. 51GPCh. 1 - Joseph watches the roadside mile markers during a...Ch. 1 - Alberta is going to have dinner at her...Ch. 1 - The end of Hubbard Glacier in Alaska advances by...Ch. 1 - The earth completes a circular orbit around the...Ch. 1 - Shannon decides to check the accuracy of her...Ch. 1 - The Nardo ring is a circular test track for cars....Ch. 1 - Motor neurons in mammals transmit signals from the...Ch. 1 - Satellite data taken several times per hour on a...Ch. 1 - The bacterium Escherichia coli (or E. coli) is a...Ch. 1 - The bacterium Escherichia coli (or E. coli) is a...Ch. 1 - The sun is 30 above the horizon. It makes a...Ch. 1 - Weddell seals foraging in open water dive toward...Ch. 1 - A large passenger aircraft accelerates down the...Ch. 1 - Whale sharks swim forward while ascending or...Ch. 1 - Starting from its nest, an eagle flies at constant...Ch. 1 - John walks 1.00 km north, then turns right and...Ch. 1 - The images of trees in Figure P1.68 come from a...Ch. 1 - The images of trees in Figure P1.68 come from a...Ch. 1 - The images of trees in Figure P1.68 come from a...
Knowledge Booster
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • Julie is walking around a track a 2m/s for some exercise. She then decides to start jogging so she accelerates at a rate of 0.5m/s? for 3 seconds. How far did Julie travel from the time she started to accelerate to the end of the 3 seconds?
    The position vs. time graph of a moving particle for a time interval of 23 seconds is shown below. Each square unit in the horizontal axis corresponds to one second, and each square unit in the vertical axis corresponds to one meter. 1) What is the instantaneous velocity of the particle at t = 11 s?  m/s 2) What is the average velocity of the particle from t = 17 s to t = 18 s?  m/s
    The figure shows three graphs, A, B, and C, which collectively describe the motion of an object in one dimension. The horizontal axis of each graph is time (symbol t). The vertical axes of the graphs are different. For one graph the vertical axis is position (symbol x), for another it is velocity (symbol v), and for another it is acceleration (symbol a). Where the axes cross is the point of zero for both time and the quantity corresponding to the vertical axis. Part A:  For which sequence of graphs is the vertical coordinate position, velocity, and acceleration, respectively? (e.g., If you think graph Y is position versus time, graph X is velocity versus time, and graph Z is acceleration versus time, then your answer is Y, X, Z.). Multiple choice:  1)C, A, B 2)A, C, B 3)C, B, A 4)B, C, A 5)B, A, C 6)A, B, C. Part (b) Which one of the following situations can be most accurately represented by the graphs, consistent with your answer to part (a)? (1) A car driving in the negative x…
  • Hi I am in physics 1 and I need help with this problem. It saids a boy runs in an open field. He runs 233m due north in 77 seconds, turns 90 degrees to his left and runs 178m  in 93 seconds. Sketch a map of his motion and find the following quantities of his motion during this period from starting time to final time a) Map of his motion b) The total distance he runs (233m + 178m= 411m) c) The displacement from starting position to final position. What I have thus far is I got c=sqrt (233)^2+(178)^2=293m. Would I subtract this number from the total distance?   Please includes detailed steps of how to solve this
    An object that moves in one dimension has the velocity-versus-time graph shown in Figure P2.52. At time t = 0, the object has position x = 0. a. At time t = 5 s. is the acceleration of the object positive, negative, or zero? Explain. b. At time t = 8 s, is the object speeding up, showing down, or moving with constant speed? Explain. c. Write an expression for the position of the object as a function of time. Explain how you use the graph to obtain your answer. d. Use your expression from part (c) to determine the time (if any) at which the object reaches its maximum position. Check your results by examining the graph. Hint: To get started with finding the maximum of a function, take the derivative and set it equal to zero.
    Liz rushes down onto a subway platform to find her train already departing. She stops and watches the cars go by. Each car is 8.60 m long. The first moves past her in 1.50 s and the second in 1.10 s. Find the constant acceleration of the train.
  • A speedboat travels in a straight line and increases in speed uniformly from vi = 20.0 m/s to vf = 30.0 m/s in a displacement x of 200 m. We wish to find the time interval required for the boat to move through this displacement. (a) Draw a coordinate system for this situation. (b) What analysis model is most appropriate for describing this situation? (c) From the analysis model, what equation is most appropriate for finding the acceleration of the speedboat? (d) Solve the equation selected in part (c) symbolically for the boats acceleration in terms of vi, vf, and x. (e) Substitute numerical values to obtain the acceleration numerically. (f) Find the time interval mentioned above.
    PROBLEM A race car starting from rest accelerates at a constant rate of 5.00 m/s2, (a) What is the velocity of the car after it has traveled 1.00 102 ft? (b) How much time has elapsed? (c) Calculate the average velocity two different ways. STRATEGY Weve read the problem, drawn the diagram in Figure 2.16, and chosen a coordinate system (steps 1 and 2). We'd like to find the velocity v after a certain known displacement x. The acceleration a is also known, as is the initial velocity v0 (step 3, labeling, is complete), so the third equation in Table 2.4 looks most useful for solving part (a). Given the velocity, the first equation in Table 2.4 can then be used to find the time in part (b). Part (c) requires substitution into Equations 2.2 and 2.7, respectively. Figure 2.16 (Example 2.4) SOLUTION (a) Convert units of x to SI, using the information in the inside front cover. Write the kinematics equation for v2 (step 4): Solve for v, taking the positive square root because the car moves to the right (step 5): Substitute v0 = 0, a = 5.00 m/s2, and x = 30.5 m: 1.00 102ft = (1.00 102 ft) v2 = v02 + 2a x v = v02+2ax v = v02+2ax = (0)2+2(5.00m/s2)(30.5m)= 17.5 m/s (b) Find the trooper's speed at that time. Substitute the time into the troopers velocity equation: vtrooper = v0 + atrooper t = 0 + (3.00m/s2)(16.9s) = 50.7 m/s Solve Example 2.5, Car Chase, by a graphical method. On the same graph, plot position versus time for the car and the trooper. From the intersection of the two curves, read the time at which the trooper overtakes the car.
    Parts (a), (b), and (c) of Figure 2.10 represent three graphs of the velocities of different objects moving in straight-line paths as functions of time. The possible accelerations of each object as functions of time are shown in parts (d), (c), and (f). Match each velocity vs. time graph with the acceleration vs. time graph that best describes the motion. Figure 2.10 (Quick Quiz 2.3) Match each velocity vs. time graph to its corresponding acceleration vs. time graph.
    • SEE MORE QUESTIONS
    Recommended textbooks for you
  • Physics for Scientists and Engineers: Foundations...
    Physics
    ISBN:9781133939146
    Author:Katz, Debora M.
    Publisher:Cengage Learning
    Principles of Physics: A Calculus-Based Text
    Physics
    ISBN:9781133104261
    Author:Raymond A. Serway, John W. Jewett
    Publisher:Cengage Learning
    College Physics
    Physics
    ISBN:9781285737027
    Author:Raymond A. Serway, Chris Vuille
    Publisher:Cengage Learning
  • Physics for Scientists and Engineers with Modern ...
    Physics
    ISBN:9781337553292
    Author:Raymond A. Serway, John W. Jewett
    Publisher:Cengage Learning
    Physics for Scientists and Engineers
    Physics
    ISBN:9781337553278
    Author:Raymond A. Serway, John W. Jewett
    Publisher:Cengage Learning
    Glencoe Physics: Principles and Problems, Student...
    Physics
    ISBN:9780078807213
    Author:Paul W. Zitzewitz
    Publisher:Glencoe/McGraw-Hill
  • Physics for Scientists and Engineers: Foundations...
    Physics
    ISBN:9781133939146
    Author:Katz, Debora M.
    Publisher:Cengage Learning
    Principles of Physics: A Calculus-Based Text
    Physics
    ISBN:9781133104261
    Author:Raymond A. Serway, John W. Jewett
    Publisher:Cengage Learning
    College Physics
    Physics
    ISBN:9781285737027
    Author:Raymond A. Serway, Chris Vuille
    Publisher:Cengage Learning
    Physics for Scientists and Engineers with Modern ...
    Physics
    ISBN:9781337553292
    Author:Raymond A. Serway, John W. Jewett
    Publisher:Cengage Learning
    Physics for Scientists and Engineers
    Physics
    ISBN:9781337553278
    Author:Raymond A. Serway, John W. Jewett
    Publisher:Cengage Learning
    Glencoe Physics: Principles and Problems, Student...
    Physics
    ISBN:9780078807213
    Author:Paul W. Zitzewitz
    Publisher:Glencoe/McGraw-Hill
    Speed Distance Time | Forces & Motion | Physics | FuseSchool; Author: FuseSchool - Global Education;https://www.youtube.com/watch?v=EGqpLug-sDk;License: Standard YouTube License, CC-BY