COLLEGE PHYSICS, V.2, CHAPT. 17-30-W/AC
COLLEGE PHYSICS, V.2, CHAPT. 17-30-W/AC
19th Edition
ISBN: 9780135160817
Author: Knight
Publisher: PEARSON
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Chapter 1, Problem 43GP

Problems 39 through 45 are motion problems similar to those you will learn to solve in Chapter 2. For now, simply interpret the problem by drawing a motion diagram showing the object's position and its velocity vectors. Do not solve these problems or do any mathematics.

39. In a typical greyhound race, a dog accelerates to a speed of 20 m/s over a distance of 30 m. It then maintains this speed. What would be a greyhound's time in the 100 m dash?

Blurred answer
Students have asked these similar questions
To get to his office from home, Greg walks 5 blocks north and then 3 blocks east. After work he meets some friends at a café; to get there he walks 2 blocks south and 5 blocks west. All blocks are 660 feet long. What is the straight-line distance from the café to his home?
Monarch butterflies belong to one of the most beautiful species of animals. To protect themselves from the cold in Canada and the United States, they fly to Mexico and the countries of Central America in the fall. If they travel an approximate distance of 3,960 km during 60 days, a) what is the speed of the butterflies in m / s b) in km / hr
To get to his office from home, Greg walks 7 blocks north and then 3 blocks east. After work he meets some friends at a cafe; to get there he walks 2 blocks south and 6 blocks west. All blocks are 660 feet long. What is the straight-line distance from the cafe to his home?

Chapter 1 Solutions

COLLEGE PHYSICS, V.2, CHAPT. 17-30-W/AC

Ch. 1 - A child is sledding on a smooth, level patch of...Ch. 1 - A skydiver jumps out of an airplane. Her speed...Ch. 1 - Your roommate drops a tennis ball from a...Ch. 1 - A car is driving north at a steady speed. It makes...Ch. 1 - Prob. 16CQCh. 1 - Prob. 17CQCh. 1 - A student walks 1.0 mi west and then 1.0 mi north....Ch. 1 - You throw a rock upward. The rock is moving...Ch. 1 - Which of the following motions could be described...Ch. 1 - Which of the following motions is described by the...Ch. 1 - A bird flies 3.0 km due west and then 2.0 km due...Ch. 1 - Weddell seals make holes in sea ice so that they...Ch. 1 - A bird flies 3.0 km due west and then 2.0 km due...Ch. 1 - Prob. 25MCQCh. 1 - Compute 3.24 m + 0.532 m to the correct number of...Ch. 1 - Prob. 27MCQCh. 1 - The earth formed 4.57 109 years ago. What is this...Ch. 1 - Prob. 29MCQCh. 1 - A car skids to a halt to avoid hitting an object...Ch. 1 - A man rides a bike along a straight road for 5...Ch. 1 - Prob. 3PCh. 1 - Figure P1.4 shows Sue along the straight-line path...Ch. 1 - Prob. 5PCh. 1 - Prob. 6PCh. 1 - Keira starts at position x = 23 m along a...Ch. 1 - A car travels along a straight east-west road. A...Ch. 1 - Foraging bees often move in straight lines away...Ch. 1 - A security guard walks at a steady pace, traveling...Ch. 1 - List the following items in order of decreasing...Ch. 1 - Prob. 12PCh. 1 - It takes Harry 35 s to walk from x = 12 m to x = ...Ch. 1 - A dog trots from x = 12 m to x = 3 m in 10 s....Ch. 1 - Prob. 15PCh. 1 - Convert the following to SI units: a. 9.12 s b....Ch. 1 - Convert the following to SI units: a. 8.0 in b. 66...Ch. 1 - Convert the following to SI units: a. 1.0 hour b....Ch. 1 - How many significant figures does each of the...Ch. 1 - How many significant figures does each of the...Ch. 1 - Compute the following numbers to three significant...Ch. 1 - lf you make multiple measurements of your height,...Ch. 1 - Prob. 23PCh. 1 - Blades of grass grow from the bottom, so, as...Ch. 1 - Estimate the average speed, in m/s, with which the...Ch. 1 - Loveland, Colorado, is 18 km due south of Fort...Ch. 1 - A city has streets laid out in a square grid, with...Ch. 1 - Joe and Max shake hands and say goodbye. Joe walks...Ch. 1 - Prob. 29PCh. 1 - A butterfly flies from the top of a tree in the...Ch. 1 - A garden has a circular path of radius 50 m. John...Ch. 1 - Prob. 32PCh. 1 - Migrating geese tend to travel at approximately...Ch. 1 - A circular test track for cars in England has a...Ch. 1 - Black vultures excel at gliding flight; they can...Ch. 1 - Prob. 36PCh. 1 - Prob. 37PCh. 1 - A hiker is climbing a steep 10 slope. Her...Ch. 1 - A ball on a porch rolls 60 cm to the porch's edge,...Ch. 1 - A kicker punts a football from the very center of...Ch. 1 - A squirrel completing a short glide travels in a...Ch. 1 - A squirrel in a typical long glide covers a...Ch. 1 - Problems 39 through 45 are motion problems similar...Ch. 1 - Problems 39 through 45 are motion problems similar...Ch. 1 - Prob. 45GPCh. 1 - Problems 39 through 45 are motion problems similar...Ch. 1 - Problems 39 through 45 are motion problems similar...Ch. 1 - Problems 39 through 45 are motion problems similar...Ch. 1 - Problems 39 through 45 are motion problems similar...Ch. 1 - Prob. 50GPCh. 1 - Prob. 51GPCh. 1 - Prob. 52GPCh. 1 - Prob. 53GPCh. 1 - Prob. 54GPCh. 1 - Prob. 55GPCh. 1 - Prob. 56GPCh. 1 - Prob. 57GPCh. 1 - Prob. 58GPCh. 1 - Prob. 59GPCh. 1 - The end of Hubbard Glacier in Alaska advances by...Ch. 1 - The earth completes a circular orbit around the...Ch. 1 - Prob. 62GPCh. 1 - Prob. 63GPCh. 1 - Shannon decides to check the accuracy of her...Ch. 1 - The Nardo ring is a circular test track for cars....Ch. 1 - Motor neurons in mammals transmit signals from the...Ch. 1 - Satellite data taken several times per hour on a...Ch. 1 - The bacterium Escherichia coli (or E. coli) is a...Ch. 1 - The bacterium Escherichia coli (or E. coli) is a...Ch. 1 - The sun is 30 above the horizon. It makes a...Ch. 1 - Weddell seals foraging in open water dive toward...Ch. 1 - Prob. 72GPCh. 1 - Whale sharks swim forward while ascending or...Ch. 1 - Starting from its nest, an eagle flies at constant...Ch. 1 - John walks 1.00 km north, then turns right and...Ch. 1 - The images of trees in Figure P1.68 come from a...Ch. 1 - The images of trees in Figure P1.68 come from a...Ch. 1 - The images of trees in Figure P1.68 come from a...
Knowledge Booster
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • A person going for a walk follows the path shown in Figure P3.35. The total trip consists of four straight-line paths. At the end of the walk, what is the persons resultant displacement measured from the starting point? Figure P3.35
    1."An airplane accelerates down a runway at 3.20m/s2 for 32.8s until it finally lifts off the ground. how long is the said runway? how long is the said runway?" From the problem, what is the most appropriate equation to be used?   2.Which describe the velocity of an object upward? a.The object moves in constant velocity for one meter b.The object adds one meter per second squared in its velocity every second c.The object changes its velocity to one meter per second at its highest point d.The object adds one meter per second in its velocity every second   3. which tells how fast an object is moving? a.30km at 40 northeast b.60 miles per hour in 4 hr c. 30 meters per second d. 30 meter per second squared
    will someone please help me with this physics questions? Part A: draw a detailed motion diagram to this question: An object covers a distance of 8 m in the first second of travel, another 8 m during the next second, and 8 m again during the third second the objects acceleration is ? 1. 5m/s 2. 1.2 m/s 3. 9.8 m/s 4. 11.0 m/s 5. 11.760 m/s   Part B A steel ball is dropped from a diving platform from rest. Given that g=9.8 m/s^2, what is the velocity of the ball 1.2 seconds after it's release? (Ignore air resistance) 1. 0 m/s 2. 1.2 m/s 3. 9.8 m/s 4. 11.0 m/s 5. 11.76 m/s       Part C: (Notice this is different from part B) A steel ball is dropped from diving platform from rest. Given that g=9.8 m/s^2, how far does it fall in the first 1.2 seconds of its flight ignoring air resistance. 1. 5.880 m 2. 7.056 m 3. 11.760 m 4. 14.112 m
  • A spacecraft accelerates from rest: a = bt = 0.2t until a = 10.4, after which it continues at constant acceleration 10.4.  Everything is in a straight line.  a) How much time does it take to reach 10.4?  (The base units are meters and seconds.) b) what are the dimensions of the number b in a = bt? c) a(t) = bt, with b=0.4, until a(t) = A = 9.3 , How fast is it going when the acceleration reaches A? d) how far does the spacecraft travel during its time of variable acceleration? b=1.0 and A = 8.9.
    1. Speed is directly proportional to the length of time travel. TRUE OR FALSE  2. In a simulation activity, when a man is moving towards the house, the position versus time graph that you observed is a straight line sloping upward. TRUE OR FALSE  3. In a simulation activity, when a man is moving towards his initial position from the house, the position versus time graph that you observed is a straight line sloping downward. TRUE OR FALSE 4. The average speed is the same as the instantaneous speed when traveling at constant speed. TRUE OR FALSE 5. In free fall motion, the velocity versus time graph is a straight line sloping upward. TRUE OF FALSE 6. The higher the object dropped, the larger its acceleration. TRUE OR FALSE 7. The slope of velocity versus time graph in free fall motion corresponds to acceleration of a falling body. TRUE OR FALSE
    I understand that I need to use the formula v^2/r to find the speeds but can't understand what number you insert for v.
  • Mr. Brown takes a walk in the park. He first travels 600. m NW and then turns and walks 800. m @ 20.0° WoS. What is his overall displacement of his walk? Use the triangle method to solve this. Should you use the component method, I will award zero points. I know the answer, I just don’t know how to get it. Answer: 771 m @ 25.1° SoW Thanks!!
    In kinematics it may be necessary to analyze a situation in which particles do not exhibit regular displacement throughout their movement, so that we cannot use just a mathematical equation to describe their velocity, acceleration and displacement. In cases like these, we use graphs to represent the motion of a particle, since the fundamental equations of speed and acceleration have geometric relationships with the graphs that represent them. Regarding the graphs of acceleration as a function of time, position as a function of time and speed as a function of time, it can be stated that:   Choose one:a. The difference between velocities v2 and v1 is numerically equal to the area under the position curve between time t1 and t2, and therefore can be calculated by the derivative: v2-v1 = dS / dt. The difference between the accelerations a1 and a2 is numerically equal to the area under the velocity curve between the time t1 and t2 and can be calculated by the derivative: a2-a1 = dv / dt.B.…
    In kinematics it may be necessary to analyze a situation in which particles do not exhibit regular displacement throughout their movement, so that we cannot use just a mathematical equation to describe their velocity, acceleration and displacement. In cases like these, we use graphs to represent the motion of a particle, since the fundamental equations of speed and acceleration have geometric relationships with the graphs that represent them. Regarding the graphs of acceleration as a function of time, position as a function of time and speed as a function of time, it can be stated that:   Choose one:The. The difference between velocities v2 and v1 is numerically equal to the area under the position curve between time t1 and t2, and therefore can be calculated by the derivative: v2-v1 = dS / dt. The difference between the accelerations a1 and a2 is numerically equal to the area under the velocity curve between the time t1 and t2 and can be calculated by the derivative: a2-a1 = dv /…
    Recommended textbooks for you
  • Physics for Scientists and Engineers with Modern ...
    Physics
    ISBN:9781337553292
    Author:Raymond A. Serway, John W. Jewett
    Publisher:Cengage Learning
  • Physics for Scientists and Engineers with Modern ...
    Physics
    ISBN:9781337553292
    Author:Raymond A. Serway, John W. Jewett
    Publisher:Cengage Learning
    Position/Velocity/Acceleration Part 1: Definitions; Author: Professor Dave explains;https://www.youtube.com/watch?v=4dCrkp8qgLU;License: Standard YouTube License, CC-BY