HEAT+MASS TRANSFER:FUND.+APPL.
HEAT+MASS TRANSFER:FUND.+APPL.
6th Edition
ISBN: 9780073398198
Author: CENGEL
Publisher: RENT MCG
bartleby

Videos

Textbook Question
Chapter 1, Problem 45CP

Consider two walls of a house that are identical except that one is made of 10-cm-thick wood while the other is made of 25-cm-thick brick. Through which wall will the house lose more heat in winter?

Blurred answer
Students have asked these similar questions
Consider a sealed 20-cm-high electronic box whose base dimensions are 40 cm x 40 cm placed in a vacuum chamber. The emissivity of the outer surface of the box is 0.95. If the electronic components in the box dissipate a total of 100 W of power and the outer surface temperature of the box is not to exceed 55°C, determine the temperature at which the surrounding surfaces must be kept if this box is to be cooled by radiation alone. Assume the heat transfer from the bottom surface of the box to the stand to be negligible.
Consider a 15-cm * 20-cm printed circuit board (PCB) that has electronic components on one side. The board is placed in a room at 20°C. The heat loss from the back surface of the board is negligible. If the circuit board is dissipating 8 W of power in steady operation, determine the average temperature of the hot surface of the board, assuming the board is (a) vertical, (b) horizontal with hot surface facing up, and (c) horizontal with hot surface facing down. Take the emissivity of the surface of the board to be 0.8 and assume the surrounding surfaces to be at the same temperature as the air in the room. Evaluate air properties at a film temperature of 32.5°C and 1 atm pressure. Is this a good assumption?
Consider a room whose door and windows are tightly closed, and whose walls are well-insulated so that heat loss or gain through the walls is negligible.

Chapter 1 Solutions

HEAT+MASS TRANSFER:FUND.+APPL.

Ch. 1 - Prob. 11CPCh. 1 - An ideal gas is heated from 50C to 80C (a) at...Ch. 1 - What is heat flux? How is it related to the heat...Ch. 1 - What are the mechanisms of energy transfer to a...Ch. 1 - A logic chip used in a computer dissipates 3 W of...Ch. 1 - Consider a 150-W incandescent lamp. The filament...Ch. 1 - A 15-cm-diameter aluminum ball is to be heated...Ch. 1 - A 60-gallon water heated is initially filled with...Ch. 1 - Prob. 19PCh. 1 - Prob. 20PCh. 1 - Prob. 21PCh. 1 - Prob. 22PCh. 1 - Prob. 23PCh. 1 - Prob. 24PCh. 1 - Prob. 25PCh. 1 - Prob. 26PCh. 1 - A 5-m6-m8-m room is to be heated by an electrical...Ch. 1 - Prob. 28PCh. 1 - Air enters the duct of an air-conditioning system...Ch. 1 - Prob. 30PCh. 1 - Define thermal conductivity, and explain its...Ch. 1 - Which is a better heat conductor, diamond or...Ch. 1 - How do the thermal conductivity of gases and...Ch. 1 - Why is the thermal conductivity of superinsulation...Ch. 1 - Why do we characterize the heat conduction ability...Ch. 1 - What are the mechanisms of heat transfer? How are...Ch. 1 - Write down the expression for the physical laws...Ch. 1 - How does heat conduction differ from convection?Ch. 1 - Does any of the energy of the sun reach the earth...Ch. 1 - How does forced convection differ from natural...Ch. 1 - What is the physical mechanism of heat conduction...Ch. 1 - Consider heat transfer a windowless wall of house...Ch. 1 - Consider heat loss through two walls of house on a...Ch. 1 - Consider two houses that are identical except that...Ch. 1 - Consider two walls of a house that are identical...Ch. 1 - Define emissivity and absorptivity. What is...Ch. 1 - What is a blackbody? How do real bodies differ...Ch. 1 - A wood slab with a thickness 0.05 m is subjected...Ch. 1 - Prob. 49PCh. 1 - Prob. 50EPCh. 1 - The inner and outer surfaces of a 0.5-cm thick...Ch. 1 - Prob. 52PCh. 1 - Prob. 53PCh. 1 - The north wall of an electrically heated home is...Ch. 1 - Prob. 55PCh. 1 - Prob. 56PCh. 1 - Prob. 57PCh. 1 - A concreate wall a surface area of 20 m2 and a...Ch. 1 - Prob. 59PCh. 1 - Prob. 60PCh. 1 - Prob. 61PCh. 1 - Prob. 62EPCh. 1 - Air at 20C with a convection heat transfer...Ch. 1 - Prob. 64PCh. 1 - Prob. 65PCh. 1 - Prob. 66PCh. 1 - Prob. 67PCh. 1 - Prob. 68PCh. 1 - Prob. 69PCh. 1 - Prob. 70PCh. 1 - Prob. 71PCh. 1 - Prob. 72EPCh. 1 - Prob. 73PCh. 1 - Prob. 74PCh. 1 - Prob. 75PCh. 1 - Prob. 76PCh. 1 - Using the conversion factors between W and Btu/h,...Ch. 1 - The outer surface of a spacecraft in space has an...Ch. 1 - Consider a person whose expose surface are is 1.7...Ch. 1 - Prob. 80PCh. 1 - Two surfaces, one highly polished and the other...Ch. 1 - A spherical interplanetary probe with a diameter...Ch. 1 - Prob. 83PCh. 1 - Can all three modes of heat transfer occur...Ch. 1 - Can a medium involve (a) conduction and...Ch. 1 - The deep human body temperature of a healthy...Ch. 1 - We often turn the fan on in summer to help us...Ch. 1 - Prob. 88PCh. 1 - Prob. 89PCh. 1 - Prob. 90PCh. 1 - An electronic package with a surface area of 1 m2...Ch. 1 - Consider steady heat transfer between two large...Ch. 1 - Prob. 93PCh. 1 - Prob. 94PCh. 1 - A 2-in-diameter spherical ball whose surface is...Ch. 1 - Prob. 96PCh. 1 - Prob. 97PCh. 1 - A 3-m-internal-diameter spherical tank made of...Ch. 1 - Prob. 99PCh. 1 - Solar radiation is incident on a 5-m2 solar...Ch. 1 - Prob. 101PCh. 1 - Prob. 102PCh. 1 - Prob. 103EPCh. 1 - An AISI 304 stainless steel sheet is going through...Ch. 1 - Prob. 105PCh. 1 - Prob. 106PCh. 1 - Prob. 107PCh. 1 - Prob. 108CPCh. 1 - Prob. 109PCh. 1 - Prob. 110PCh. 1 - Prob. 111PCh. 1 - Prob. 112PCh. 1 - Prob. 113CPCh. 1 - Why is the metabolic rate of women, in general,...Ch. 1 - What is asymmetric thermal radiation How does it...Ch. 1 - How do (a) draft and (b) cold floor surfaces cause...Ch. 1 - Prob. 117CPCh. 1 - Why is it necessary to ventilate buildings? What...Ch. 1 - Consider a house in Atlanta, Georgia, that is...Ch. 1 - Prob. 120PCh. 1 - A 4m5m6m and room is to be heated by one ton (1000...Ch. 1 - Engine valves (cp=440J/kg.Kandp=7840kg/m3) are to...Ch. 1 - Prob. 123PCh. 1 - Prob. 124PCh. 1 - A 0.3 -cm-thick, 12-cm-high, and 18-cm-long...Ch. 1 - A 40-cm-long, 800-W electric resistance heating...Ch. 1 - It is well known that wind makes the cold air feel...Ch. 1 - An engine block with a surface area measured to be...Ch. 1 - Prob. 129PCh. 1 - Prob. 130PCh. 1 - Prob. 131PCh. 1 - Consider a person standing in a room maintained at...Ch. 1 - Prob. 133PCh. 1 - Prob. 134PCh. 1 - Prob. 135PCh. 1 - Prob. 136PCh. 1 - Prob. 137PCh. 1 - Prob. 138PCh. 1 - Prob. 139PCh. 1 - Prob. 140PCh. 1 - Prob. 141PCh. 1 - Prob. 142PCh. 1 - A 2-kW electric resistance heater submerged in...Ch. 1 - Prob. 144PCh. 1 - A cold bottled drink (m=2.5kg,cp=4200J/kg.K) at...Ch. 1 - Prob. 146PCh. 1 - Air enters a 12-m-long, 7-cm-diameter pipe at 50oC...Ch. 1 - Prob. 148PCh. 1 - Steady heat conduction occurs through a...Ch. 1 - Heat is lost through a brick wall (k=0.72W/m.K),...Ch. 1 - Prob. 151PCh. 1 - A 40-cm-long, 0.4-cm-diameter electric resistance...Ch. 1 - Prob. 153PCh. 1 - Prob. 154PCh. 1 - Over 90 percent of the energy dissipated by an...Ch. 1 - On a still, cleat night, the sky appears to be a...Ch. 1 - Prob. 157PCh. 1 - Prob. 158PCh. 1 - A persons head can be approximated as a...Ch. 1 - A person standing in a room loses heat to the air...Ch. 1 - Write an essay on how microwave ovens work, and...Ch. 1 - Using information form the utility bill for the...Ch. 1 - It is well know that at the same outdoor air...
Knowledge Booster
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • Consider a 1.2-m-high and 2-m-wide double-pane window consisting of two 0.0023-m-thick layers of glass (k = 0.78 W/m·K) separated by a 12-mm-wide vacuum space. Take the convection heat transfer coefficients on the inner and outer surfaces of the window to be h1 = 10 W/m2·K and h2 = 25 W/m2·K, and disregard any heat transfer by radiation. Assume that the space between the two glass layers is evacuated.Determine the steady rate of heat transfer (in W) through the glass window. The room is maintained at 24°C while the temperature of the outdoors is –5°C. (Radiation in outer side of the double-pane window should be disregarded but in the inner part, the only mechanism of heat transfer in vacuum is by radiation. Emissivity for glass is around 1, and the temperature of inner surfaces of the double-pane window should be assumed to be 5 and 15 'C.)
    A 10-m-long section of a 6-cm-diameter horizontal hot-water pipe passes through a large room whose temperature is 27°C. If the temperature and the emissivity of the outer surface of the pipe are 73°C and 0.8, respectively, determine the rate of heat loss from the pipe by (a) natural convection and (b) radiation.
    A 0.3-cm-thick, 12-cm-high, and 18-cm-long circuit board houses 80 closely spaced logic chips on one side,each dissipating 0.06 W. The board is impregnated with copper fillings and has an effective thermalconductivity of 16 W/m · °C. All the heat generated in the chips is conducted across the circuit board andis dissipated from the back side of the board to the ambient air at 30°C, which is forced to flow over thesurface by a fan at a free-stream velocity of 400 m/min. Determine the temperatures on the two sides ofthe circuit board.
  • 1. A 1000-W iron is left on the iron board with its base exposed to the air at 20°C. The convection heat transfer coefficient between the base surface and the surrounding air is 35 W/m². °C. If the base has an emissivity of 0.6 and a surface area of 0.02 m², determine the temperature of the base of the iron. 2. The inner and outer surfaces of a 5-m x 6-m brick wall of thickness 30 cm and thermal conductivity 0.69 W/m °C are maintained at temperatures of 20°C and 5°C, respectively. Determine the rate of heat transfer through the wall, in W.
    A 50-cm * 50-cm circuit board that contains 121 square chips on one side is to be cooled by combined natural convection and radiation by mounting it on a vertical surface in a room at 25°C. Each chip dissipates 0.18 W of power, and the emissivity of the chip surfaces is 0.7. Assuming the heat transfer from the back side of the circuit board to be negligible, and the temperature of the surrounding surfaces to be the same as the air temperature of the room, determine the surface temperature of the chips. Evaluate air properties at a film temperature of 30°C and 1 atm pressure. Is this a good assumption?
    Consider a cold aluminum canned drink that is initially at a uniform temperature of 4°C. The can is 12.5 cm high and has a diameter of 6 cm. If the combined convection/radiation heat transfer coefficient between the can and the surrounding air at 25°C is 10 W/m2 · °C, determine how long it will take for the average temperature of the drink to rise to 15°C. In an effort to slow down the warming of the cold drink, a person puts the can in a perfectly fitting 1-cm-thick cylindrical rubber insulator (k = 0.13 W/m · °C). Now how long will it take for the average temperature of the drink to rise to 15°C? Assume the top of the can is not covered.
    • SEE MORE QUESTIONS
    Recommended textbooks for you
  • Principles of Heat Transfer (Activate Learning wi...
    Mechanical Engineering
    ISBN:9781305387102
    Author:Kreith, Frank; Manglik, Raj M.
    Publisher:Cengage Learning
  • Principles of Heat Transfer (Activate Learning wi...
    Mechanical Engineering
    ISBN:9781305387102
    Author:Kreith, Frank; Manglik, Raj M.
    Publisher:Cengage Learning
    Heat Transfer – Conduction, Convection and Radiation; Author: NG Science;https://www.youtube.com/watch?v=Me60Ti0E_rY;License: Standard youtube license