Heat and Mass Transfer: Fundamentals and Applications
Heat and Mass Transfer: Fundamentals and Applications
5th Edition
ISBN: 9780077654764
Author: CENGEL
Publisher: Mcgraw-Hill Course Content Delivery
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Chapter 1, Problem 46CP

Consider heat transfer a windowless wall of house on a winter day. Discuss the parameter that effect the rate of heat conduction through the wall.

Blurred answer
Students have asked these similar questions
Consider heat transfer through a windowless wall of a house on a winter day. Discuss the parameters that affect the rate of heat conduction through the wall.
Define Nusselt number and discuss when is heat transfer through a fluid conductionand when is it convection? For what case is the rate of heat transfer higher?
Energy transfer by conduction is primarily restricted to liquids fluids gases solids   Which is correct?

Chapter 1 Solutions

Heat and Mass Transfer: Fundamentals and Applications

Ch. 1 - An ideal gas is heated from 50C to 80C (a) at...Ch. 1 - Prob. 12CPCh. 1 - What is heat flux? How is it related to the heat...Ch. 1 - What are the mechanisms of energy transfer to a...Ch. 1 - A logic chip used in a computer dissipates 3 W of...Ch. 1 - Consider a 150-W incandescent lamp. The filament...Ch. 1 - A 15-cm-diameter aluminum ball is to be heated...Ch. 1 - Prob. 18PCh. 1 - Prob. 19PCh. 1 - A 60-gallon water heated is initially filled with...Ch. 1 - Prob. 21PCh. 1 - Prob. 22PCh. 1 - Prob. 23PCh. 1 - Prob. 24PCh. 1 - Prob. 25PCh. 1 - Prob. 26PCh. 1 - Prob. 27PCh. 1 - Prob. 28PCh. 1 - A 5-m6-m8-m room is to be heated by an electrical...Ch. 1 - Prob. 30PCh. 1 - Prob. 31PCh. 1 - Air enters the duct of an air-conditioning system...Ch. 1 - Define thermal conductivity, and explain its...Ch. 1 - Prob. 34CPCh. 1 - Which is a better heat conductor, diamond or...Ch. 1 - How do the thermal conductivity of gases and...Ch. 1 - Why is the thermal conductivity of superinsulation...Ch. 1 - Why do we characterize the heat conduction ability...Ch. 1 - Prob. 39CPCh. 1 - What are the mechanisms of heat transfer? How are...Ch. 1 - Write down the expression for the physical laws...Ch. 1 - How does heat conduction differ from convection?Ch. 1 - Does any of the energy of the sun reach the earth...Ch. 1 - How does forced convection differ from natural...Ch. 1 - What is the physical mechanism of heat conduction...Ch. 1 - Consider heat transfer a windowless wall of house...Ch. 1 - Consider heat loss through two walls of house on a...Ch. 1 - Consider two houses that are identical except that...Ch. 1 - Consider two walls of a house that are identical...Ch. 1 - Define emissivity and absorptivity. What is...Ch. 1 - What is a blackbody? How do real bodies differ...Ch. 1 - A wood slab with a thickness 0.05 m is subjected...Ch. 1 - Prob. 53PCh. 1 - The inner and outer surfaces of a 0.5-cm thick...Ch. 1 - Prob. 55PCh. 1 - Prob. 56PCh. 1 - The north wall of an electrically heated home is...Ch. 1 - Prob. 58PCh. 1 - Prob. 59PCh. 1 - Prob. 60PCh. 1 - A concreate wall a surface area of 20 m2 and a...Ch. 1 - Prob. 62PCh. 1 - Prob. 63PCh. 1 - Prob. 64EPCh. 1 - Prob. 65EPCh. 1 - Air at 20C with a convection heat transfer...Ch. 1 - Prob. 67PCh. 1 - Prob. 68PCh. 1 - Prob. 69PCh. 1 - Prob. 70PCh. 1 - Prob. 71PCh. 1 - Prob. 72PCh. 1 - Prob. 73PCh. 1 - Prob. 74PCh. 1 - Prob. 75PCh. 1 - Prob. 76EPCh. 1 - Prob. 77EPCh. 1 - Prob. 78PCh. 1 - Prob. 79PCh. 1 - Prob. 80PCh. 1 - Prob. 81PCh. 1 - Prob. 82PCh. 1 - Using the conversion factors between W and Btu/h,...Ch. 1 - The outer surface of a spacecraft in space has an...Ch. 1 - Consider a person whose expose surface are is 1.7...Ch. 1 - Prob. 86PCh. 1 - Two surfaces, one highly polished and the other...Ch. 1 - A spherical interplanetary probe with a diameter...Ch. 1 - Prob. 89PCh. 1 - Can all three modes of heat transfer occur...Ch. 1 - Can a medium involve (a) conduction and...Ch. 1 - The deep human body temperature of a healthy...Ch. 1 - We often turn the fan on in summer to help us...Ch. 1 - Prob. 94PCh. 1 - Prob. 95PCh. 1 - Prob. 96PCh. 1 - An electronic package with a surface area of 1 m2...Ch. 1 - Consider steady heat transfer between two large...Ch. 1 - Prob. 99PCh. 1 - Prob. 100PCh. 1 - A 2-in-diameter spherical ball whose surface is...Ch. 1 - Prob. 102PCh. 1 - A 3-m-internal-diameter spherical tank made of...Ch. 1 - Prob. 104PCh. 1 - Solar radiation is incident on a 5-m2 solar...Ch. 1 - Prob. 106PCh. 1 - Prob. 107PCh. 1 - Prob. 108PCh. 1 - Prob. 109EPCh. 1 - An AISI 304 stainless steel sheet is going through...Ch. 1 - Prob. 111PCh. 1 - Prob. 112CPCh. 1 - Prob. 113PCh. 1 - Prob. 114PCh. 1 - Prob. 115PCh. 1 - Prob. 116PCh. 1 - Prob. 117PCh. 1 - Why is the metabolic rate of women, in general,...Ch. 1 - What is asymmetric thermal radiation How does it...Ch. 1 - How do (a) draft and (b) cold floor surfaces cause...Ch. 1 - Prob. 121CPCh. 1 - Why is it necessary to ventilate buildings? What...Ch. 1 - Consider a house in Atlanta, Georgia, that is...Ch. 1 - Prob. 124PCh. 1 - Prob. 125PCh. 1 - Prob. 126PCh. 1 - A 4m5m6m and room is to be heated by one ton (1000...Ch. 1 - Engine valves (cp=440J/kg.Kandp=7840kg/m3) are to...Ch. 1 - Prob. 129PCh. 1 - Prob. 130PCh. 1 - A 0.3 -cm-thick, 12-cm-high, and 18-cm-long...Ch. 1 - A 40-cm-long, 800-W electric resistance heating...Ch. 1 - It is well known that wind makes the cold air feel...Ch. 1 - An engine block with a surface area measured to be...Ch. 1 - Prob. 135PCh. 1 - Prob. 136PCh. 1 - Prob. 137PCh. 1 - Consider a person standing in a room maintained at...Ch. 1 - Prob. 139PCh. 1 - Prob. 140PCh. 1 - Prob. 141PCh. 1 - Prob. 142PCh. 1 - Prob. 143PCh. 1 - Prob. 144PCh. 1 - Prob. 145PCh. 1 - Prob. 146PCh. 1 - A 2-kW electric resistance heater submerged in...Ch. 1 - Prob. 148PCh. 1 - A cold bottled drink (m=2.5kg,cp=4200J/kg.K) at...Ch. 1 - Prob. 150PCh. 1 - Air enters a 12-m-long, 7-cm-diameter pipe at 50oC...Ch. 1 - Prob. 152PCh. 1 - Steady heat conduction occurs through a...Ch. 1 - Heat is lost through a brick wall (k=0.72W/m.K),...Ch. 1 - Prob. 155PCh. 1 - A 40-cm-long, 0.4-cm-diameter electric resistance...Ch. 1 - Prob. 157PCh. 1 - Over 90 percent of the energy dissipated by an...Ch. 1 - On a still, cleat night, the sky appears to be a...Ch. 1 - Prob. 160PCh. 1 - Prob. 161PCh. 1 - A persons head can be approximated as a...Ch. 1 - A person standing in a room loses heat to the air...Ch. 1 - Prob. 164PCh. 1 - Write an essay on how microwave ovens work, and...Ch. 1 - Using information form the utility bill for the...Ch. 1 - It is well know that at the same outdoor air...
Knowledge Booster
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • 1.60 Two electric resistance heaters with a 20 cm length and a 2 cm diameter are inserted into a well-insulated 40-L tank of water that is initially at 300 K. If each heater dissipates 500 W, what is the time required for bringing the water temperature in the tank to 340 K? State your assumption for your analysis.
    1.39 On a cold winter day, the outside wall of a home is exposed to an air temperature of when the inside temperature of the room is at . As a result of this temperature gradient, there is heat loss through the wall to the outside. Consider the convective heat transfer coefficients for the air inside the room and at the outside wall surface to be, respectively, 12.0 and . If the composite room wall is modeled as a plane wall with a thermal resistance per unit area of , determine the temperature at the outer surface of the wall as well as the rate of heat flow through the wall per unit area. If the homeowner were to consider using a fiberglass insulation layer on the inside wall surface for reducing this heat loss by 50%, what is the required thickness of this layer and the outside wall temperature for this case?
    Show that the rate of heat conduction per unit length through a long, hollow cylinder of inner radius ri and outer radius ro, made of a material whose thermal conductivity varies linearly with temperature, is given by qkL=TiTo(rori)/kmA where Ti = temperature at the inner surface To = temperature at the outer surface A=2(rori)/ln(ro/ri)km=ko[1+k(Ti+To)/2]L=lenthofcyclinder
    • SEE MORE QUESTIONS
    Recommended textbooks for you
  • Principles of Heat Transfer (Activate Learning wi...
    Mechanical Engineering
    ISBN:9781305387102
    Author:Kreith, Frank; Manglik, Raj M.
    Publisher:Cengage Learning
  • Principles of Heat Transfer (Activate Learning wi...
    Mechanical Engineering
    ISBN:9781305387102
    Author:Kreith, Frank; Manglik, Raj M.
    Publisher:Cengage Learning
    Understanding Conduction and the Heat Equation; Author: The Efficient Engineer;https://www.youtube.com/watch?v=6jQsLAqrZGQ;License: Standard youtube license