Introduction To Finite Element Analysis And Design
Introduction To Finite Element Analysis And Design
2nd Edition
ISBN: 9781119078722
Author: Kim, Nam H., Sankar, Bhavani V., KUMAR, Ashok V., Author.
Publisher: John Wiley & Sons,
bartleby

Videos

Textbook Question
Chapter 1, Problem 6E

Consider the spring-rigid body system described in problem 3. What force F 2 should be applied on body 2 in order to keep it from moving? How will this affect the support reactions?

Hint: Impose the boundary condition u 2 = 0 in the finite element model and solve for displacements u 3 and u 4 . Then, the force F 2 will be the reaction at node 2.

Blurred answer
04:08
Students have asked these similar questions
(PSD) A precision milling machine, weighing 4500 N, is supported on a rubber mount. The force-deflection relationship of the rubber mount is given by F = 270x + 0.25(x^3). Determine the equivalent linearized spring constant of the rubber mount at its static equilibrium position.
Dynamics of rigid bodies Problem 5
PROBLEMFor the plane truss given below, using the Matrix Stiffness Analysis method, determine;• Determine displacements of the joints• Determine the forces in the truss members• Determine the support reactionsNote that the whole system has 4 nodes and hence 8 degrees of freedom. These degrees of freedomsare shown (in their positive directions) on the right hand side of the problem picture (1 to 8). So, thesystem stiffness matrix, K, will be 8x8 in size.Force and displacement units should be consistent (mm’s and N’s for example)

Chapter 1 Solutions

Introduction To Finite Element Analysis And Design

Ch. 1 - A structure is composed of two one-dimensional bar...Ch. 1 - Two rigid masses, 1 and 2, are connected by three...Ch. 1 - Use the finite element method to determine the...Ch. 1 - Consider a tapered bar of circular cross section....Ch. 1 - The stepped bar shown in the figure is subjected...Ch. 1 - Using the direct stiffness matrix method, find the...Ch. 1 - A stepped bar is clamped at one end and subjected...Ch. 1 - A stepped bar is clamped at both ends. A force of ...Ch. 1 - Repeat problem 18 for the stepped bar shown in the...Ch. 1 - The finite element equation for the uniaxial bar...Ch. 1 - The truss structure shown in the figure supports a...Ch. 1 - The properties of the two elements of a plane...Ch. 1 - For a two-dimensional truss structure as shown in...Ch. 1 - The 2D truss shown in the figure is assembled to...Ch. 1 - For a two-dimensional truss structure as shown in...Ch. 1 - The truss shown in the figure supports force Fat...Ch. 1 - Prob. 27ECh. 1 - In the finite element model of a plane truss in...Ch. 1 - Use the finite element method to solve the plane...Ch. 1 - The plane truss shown in the figure has two...Ch. 1 - Two bars are connected as shown in the figure....Ch. 1 - The truss structure shown in the figure supports...Ch. 1 - It is desired to use the finite element method to...Ch. 1 - Determine the member force and axial stress in...Ch. 1 - Determine the normal stress in each member of the...Ch. 1 - The space truss shown has four members. Determine...Ch. 1 - The uniaxial bar shown below can be modeled as a...Ch. 1 - In the structure shown below, the temperature of...Ch. 1 - Prob. 39ECh. 1 - The three-bar truss problem in figure 1.23 is...Ch. 1 - Use the finite element method to determine the...Ch. 1 - Repeat problem 41 for the new configuration with...Ch. 1 - Repeat problem 42 with an external force added to...Ch. 1 - The properties of the members of the truss in the...Ch. 1 - Repeat problem 44 for the truss on the right side...Ch. 1 - The truss shown in the figure supports the force ....Ch. 1 - The finite element method as used to solve the...Ch. 1 - Prob. 48E
Knowledge Booster
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • Figure below shows a mass-spring model of the type used to design packaging systems and vehicle suspensions, for example. The springs exert a force that is proportional to their compression, and the proportionality constant is the spring constant k. The two side springs provide additional resistance if the weight W is too heavy for the center spring. When the weight W is gently placed, it moves through a distance x before coming to rest. From statics, the weight force must balance the spring forces at this new position. (if x=d) These relations can be used to generate the plot of x versus W. (a) The following values are given: k1=104 N/m; k2 = 1.5 *104 N/m; d =0.1 m. Create a function that computes the distance x, using the input parameter W; Then, test your function for the following two cases, using the values: W=500 N W=2000 N. (b) Create another script and use your function to plot x versus W for 0 < W < 3000 N for the values of k1, k2, and d given in part a.
    Find the global stiffness matrix, displacement at node 1&2, reaction forces at 1&4, and force in spring for the following figure shown below. k1=90 N/mm, k2=1800 N/mm, k3=80 N/mm, P=600 N and u1=u4=0
    'A model for the elbow joint models the bicep muscle connecting to the horizontal forearm by a vertical tendon 4cm from the elbow joint. A mass m is held in the hand 30cm from the elbow joint. If the maximum tension that can be exerted by the tendon before injury occurs is 2250N, find the maximum mass that can be held in this way.' Im stuck on this question
    • SEE MORE QUESTIONS
    Recommended textbooks for you
  • Elements Of Electromagnetics
    Mechanical Engineering
    ISBN:9780190698614
    Author:Sadiku, Matthew N. O.
    Publisher:Oxford University Press
    Mechanics of Materials (10th Edition)
    Mechanical Engineering
    ISBN:9780134319650
    Author:Russell C. Hibbeler
    Publisher:PEARSON
    Thermodynamics: An Engineering Approach
    Mechanical Engineering
    ISBN:9781259822674
    Author:Yunus A. Cengel Dr., Michael A. Boles
    Publisher:McGraw-Hill Education
  • Control Systems Engineering
    Mechanical Engineering
    ISBN:9781118170519
    Author:Norman S. Nise
    Publisher:WILEY
    Mechanics of Materials (MindTap Course List)
    Mechanical Engineering
    ISBN:9781337093347
    Author:Barry J. Goodno, James M. Gere
    Publisher:Cengage Learning
    Engineering Mechanics: Statics
    Mechanical Engineering
    ISBN:9781118807330
    Author:James L. Meriam, L. G. Kraige, J. N. Bolton
    Publisher:WILEY
  • Elements Of Electromagnetics
    Mechanical Engineering
    ISBN:9780190698614
    Author:Sadiku, Matthew N. O.
    Publisher:Oxford University Press
    Mechanics of Materials (10th Edition)
    Mechanical Engineering
    ISBN:9780134319650
    Author:Russell C. Hibbeler
    Publisher:PEARSON
    Thermodynamics: An Engineering Approach
    Mechanical Engineering
    ISBN:9781259822674
    Author:Yunus A. Cengel Dr., Michael A. Boles
    Publisher:McGraw-Hill Education
    Control Systems Engineering
    Mechanical Engineering
    ISBN:9781118170519
    Author:Norman S. Nise
    Publisher:WILEY
    Mechanics of Materials (MindTap Course List)
    Mechanical Engineering
    ISBN:9781337093347
    Author:Barry J. Goodno, James M. Gere
    Publisher:Cengage Learning
    Engineering Mechanics: Statics
    Mechanical Engineering
    ISBN:9781118807330
    Author:James L. Meriam, L. G. Kraige, J. N. Bolton
    Publisher:WILEY
    Mechanical SPRING DESIGN Strategy and Restrictions in Under 15 Minutes!; Author: Less Boring Lectures;https://www.youtube.com/watch?v=dsWQrzfQt3s;License: Standard Youtube License