
The reservoir pressure and temperature for a convergent-divergent nozzle are 5 atm and

The Mach Number
The exit pressure
The exit Temperature
The exit density
The velocity of flow at exit
The stagnation pressure at exit
The stagnation temperature at exit
Answer to Problem 10.1P
The Mach Number
The exit pressure
The exit Temperature
The exit density
The velocity of flow at exit
The stagnation pressure at exit
The stagnation temperature at exit
Explanation of Solution
Given:
The Reservoir pressure is
The Reservoir temperature is
The ratio of exit area to throat area is
Formula used:
The expression for calculating pressure is given as,
The expression for calculating temperature is given as,
The expression for density is given as,
Here,
The expression for velocity of sound is given as,
Here
The expression for speed of velocity is given as,
Calculation:
Refer to the “isentropic flow properties” for the Mach number at the ratio of exit area to throat area. The Mach number is obtained as,
Refer to the “isentropic flow properties” for the pressure ratio at the ratio of exit area to throat area. The pressure ratio is obtained as,
Refer to the “isentropic flow properties” for the temperature ratio at the ratio of exit area to throat area. The temperature ratio is obtained as,
The pressure at the exit is calculated as,
The stagnation pressure at the exit is calculated as,
The Temperature at the exit is calculated as,
The stagnation temperature at the exit is calculated as,
The Density at the exit is calculated as,
The value of gas constant is in English units is
The velocity at exit is calculated as,
The value of adiabatic constant is
Conclusion:
Therefore, The Mach Number
Therefore, The exit pressure
Therefore, The exit Temperature
Therefore, The exit density
Therefore, The velocity of flow at exit
Therefore, The stagnation pressure at exit
Therefore, The stagnation temperature at exit
Want to see more full solutions like this?
Chapter 10 Solutions
Fundamentals of Aerodynamics
Additional Engineering Textbook Solutions
Automotive Technology: Principles, Diagnosis, And Service (6th Edition) (halderman Automotive Series)
Vector Mechanics for Engineers: Statics and Dynamics
Mechanics of Materials (10th Edition)
Management Information Systems: Managing The Digital Firm (16th Edition)
Database Concepts (8th Edition)
Concepts Of Programming Languages
- Consider two-dimensional flow in the xy-plane. The difference in the value of Ψ from one streamline to another is equal to the __________blank between the two streamlines. Multiple Choice volume flow rate per unit width distance velocity volume strain rate per unit widtharrow_forwardMultiple Choice a=2ba=2b a=−ba=−b 3a=2b3a=2b 2a=−3b2a=−3b a=barrow_forwardQuestion F: Imagine that the diving board at your local swimming pool is made of cold drawn steel, and that we model it as a cantilever beam. We model the cyclic loading as a person jumping off the diving board for maximum load, and the diving board being at rest for minimum load. The parameters for the problem are shown in the table below. Use only this table for this questionarrow_forward
- Question P: A spur gear drive in a commercial enclosed gear unit has the input data shown in the table below. Use only this table for this questionarrow_forwardQuestion Q: A spur gear drive in a commercial enclosed gear unit has the input data shown in the table below. Use only this table for this question! Other data can be obtained from the figures and tables from our textbook, also shown below. What is the bending stress number stp in the pinion in psi? (Type in an integer.arrow_forwardQuestion 15 0 / 6 points Question O: A spur gear drive has the input data shown in the table below. Use only this table for this question. What is the tangential force on the pinion and gear in pounds? (Type in an integer.) Degrees per Radian = 57.296 degrees Pinion Torque: T= 250 Ibf-in Pinion speed: n₁ = 1150 rpm Pinion Number of teeth: Np = 20 Diametral pitch: Pd = 12 Answer: × (300)arrow_forward
- Question 14 0 / 6 points Question N: A spur gear drive has the input data shown in in the table below. Use only this table for this question! What is the pitch line speed in ft/min? (Type in an integer.) Degrees per Radian = Pinion speed n p = 57.296 degrees 3540 rpm Pinion Number of teeth: Np = 20 Gear Number of teeth: NG= 50 Diametral pitch: Pd = 6arrow_forwardQuestion M: Use only the following information for this question. A bevel gear drive has the following attributes: The pinion has 20 teeth, the gear ratio is 3.250, the diametral pitch is 10, and the pressure angle is 20°. What is the pitch cone angle of the pinion in degrees? (Type in a one-decimal number.) Answer: x (17.1)arrow_forwardQuestion L: A chain drive has information per the table below. Use only this table for this question! You will use Table 7-14 to select components for the chain drive. What is the length of the chain in inches that you should purchase for this application? (First, round up to an even number of pitches for the chain length. Then calculate the chain length in inches. (Type in an integer.) Chain pitch: p = 0.500 inches Roller chain size number = 40 Motor speed n₁ = 500 rpm Design power 3.50 hp Speed ratio: VR = 2.0 Nominal Center Distance: C = 24.00 inches TABLE 7-14 Horsepower Ratings-Single-Strand Roller Chain No. 40 No. of 0.500-in pitch Rotational Speed of small sprocket in rpm teeth 10 25 11 0.06 0.14 12 0.06 0.15 13 0.07 0.16 14 15 0.08 0.19 16 0.08 0.20 0.39 0.75 17 0.09 0.21 0.41 0.80 18 20 0.09 0.22 19 0.10 0.24 0.10 0.25 0.48 21 1.12 22 0.11 0.27 0.53 1.03 1.81 201 23 0.12 0.28 0.56 1.08 1.90 2.10 24 0.12 0.30 0.58 1.98 2.19 25 0.13 0.31 0.60 1.17 2.06 2.28 3.36 5.49 50 100 180…arrow_forward
- Question K: A chain drive has information per the table below. Use only this table for this question! You will use Table 7-14 to select components for the chain drive. How many teeth are in the large sprocket? (Type in an integer.) Chain pitch: p= 0.500 inches Roller chain size number = 40 Motor speed n₁ = 500 rpm Design power = 3.50 hp Speed ratio: VR = 2.0 Nominal Center Distance: C = 24.00 inches No. of teeth TABLE 7-14 Horsepower Ratings-Single-Strand Roller Chain No. 40 0.500-in pitch Rotational Speed of small sprocket in rpm 10 25 50 100 180 200 300 500 700 900 1000 11 12 0.06 0.14 0.27 0.52 0.91 1.00 0.06 0.15 0.99 1.48 2.42 3.34 4.25 4.70 0.29 0.56 1.09 1.61 2.64 3.64 4.64 5.13 13 0.07 0.16 0.31 0.61 1.07 1.19 1.75 2.86 3.95 5.02 5.56 14 0.07 0.17 0.34 0.66 1.15 1.28 1.88 3.08 4.25 5.41 5.98 15 0.08 0.19 0.36 0.70 1.24 1.37 2.02 3.30 4.55 5.80 6.41 16 0.08 0.20 0.39 0.75 1.32 1.46 2.15 3.52 4.86 6.18 6.84 17 0.09 0.21 0.41 0.80 1.40 1.55 18 0.09 0.22 0.43 0.84 19 0.10 0.24 0.46…arrow_forwardQuestion D: Dimensions, material properties, and certain constants for a rod are shown in the table below. Use only this table for this question! Other data can be obtained from the figures and tables shown below. Input Data: Shaft material specification: Machined Steel Type of Stress: Reversed, repeated bending Tensile strength: s₁ = 825 MPa Reliability: 99.0% Material factor: C 0.80 Type of stress factor: Cst Shaft diameter: D= 1.00 Use 0.80 for cast steel Use 1.00 for bending stress 45 mm TABLE 5-3 Approximate Reliability Desired reliability Factors, CR CR 0.50 1.0 0.90 0.90 0.99 0.81 0.999 0.75arrow_forwardUse only the following information for this question. The available V-belt sizes are given in Table 7-2 from the textbook as shown below. Your motor is running at 1160 rpm and your design power is 3 hp. Figure 7-13 is shown below to help you select a V-belt. The small V-belt pulley has a diameter of 8.00 inches, and the speed ratio between the driving and driven pulley is 1.50. Your machine needs a pulley center distance of roughly 26.0 inches. What is the maximum center distance in inches that you could use in this application, if the machine design warranted it? (Type in a one-decimal numberarrow_forward
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage LearningRefrigeration and Air Conditioning Technology (Mi...Mechanical EngineeringISBN:9781305578296Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill JohnsonPublisher:Cengage LearningAutomotive Technology: A Systems Approach (MindTa...Mechanical EngineeringISBN:9781133612315Author:Jack Erjavec, Rob ThompsonPublisher:Cengage Learning
- International Edition---engineering Mechanics: St...Mechanical EngineeringISBN:9781305501607Author:Andrew Pytel And Jaan KiusalaasPublisher:CENGAGE L



