Physics for Scientists and Engineers, Technology Update (No access codes included)
Physics for Scientists and Engineers, Technology Update (No access codes included)
9th Edition
ISBN: 9781305116399
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 10, Problem 10.47P

A war-wolf or trebuchet is a device used during the Middle Ages to throw rocks at castles and now sometimes used to fling large vegetables and pianos as a sport. A simple trebuchet is shown in Figure P10.26. Model it as a stiff rod of negligible mass, 3.00 m long, joining particles of mass m1 = 0.120 kg and m2 = 60.0 kg at its ends. It can turn on a frictionless, horizontal axle perpendicular to the rod and 14.0 cm from the large-mass particle. The operator releases the trebuchet from rest in a horizontal orientation. (a) Find the maximum speed that the small-mass object attains. (b) While the small-mass object is gaining speed, does it move with constant acceleration? (c) Does it move with constant tangential acceleration? (d) Does the trebuchet move with constant angular acceleration? (e) Does it have constant momentum? (f) Does the trebuchet–Earth system have constant mechanical energy?

Figure P10.26

Chapter 10, Problem 10.47P, A war-wolf or trebuchet is a device used during the Middle Ages to throw rocks at castles and now

(a)

Expert Solution
Check Mark
To determine

The maximum speed that the small mass object attains.

Answer to Problem 10.47P

The maximum speed that the small mass object attains is 24m/s2.

Explanation of Solution

The mass of small object is 0.120kg, the mass of the heavier object is 60.0kg and the length of the stiff rod is 3.00m. The distance of the large mass from the axle is 14.0cm.

Formula to calculate the distance of the small mass object from the axle is,

    r1=lr2

Here, r1 is the distance of the distance of the small mass object from the axle, r2 is the distance of the distance of the heavier mass object from the axle and l is the length of the stiff rod.

Substitute 3.00m for l and 14.0cm for r2 to find r1.

    r1=3.00m14.0cm×102m1cm=2.86m

The small mass attains maximum speed when the stiff rod lies in vertical position by lower the heavier mass down ward. Initially the energy of the system is zero and the system start gaining speed and attains maximum speed at higher gravitational potential energy.

Assume the zero potential line is passes through the axle of the system horizontally.

Formula to calculate the final gravitational potential energy of the small mass is,

    Uf1=m1gr1

Here, Uf1 is the final gravitational potential energy of the small object, m1 is the mass of the small object, g is the acceleration due to gravity and r1 is the distance of the small object from the axle.

Formula to calculate the final gravitational potential energy of the heavier mass is,

    Uf2=m2gr2

Here, Uf2 is the final gravitational potential energy of the small object, m2 is the mass of the small object an d r2 is the distance of the small object from the axle.

Formula to calculate the moment of inertia of the system is,

    I=m1r12+m2r22

Formula to calculate the rotational kinetic energy of the system is,

    Kr=12Iω2

Here, Kr is the rotational kinetic energy of the system, I is the moment of inertia of the system and ω is the angular speed of the system.

Substitute m1r12+m2r22 for I in above equation.

    Kr=12(m1r12+m2r22)ω2

The law of energy conservation for the system is given as,

    Ui=Uf1+Uf2+Kr

Substitute 0 for Ui, m1gr1 for Uf1, (m2gr2) for Uf2 and 12(m1r12+m2r22)ω2 for Kr in above equation.

    m1gr1+(m2gr2)+12(m1r12+m2r22)ω2=0

Rearrange the above equation for ω.

    (m1r12+m2r22)ω2=2(m2r2m1r1)gω=2(m2r2m1r1)g(m1r12+m2r22)

Substitute 0.120kg for m1, 60.0kg for m2, 2.86m for r1, 14.0cm for r2 and 9.8m/s2 for g in above equation.

    ω=2((60.0kg)(14cm×102m1cm)(0.120kg)(2.86m))(9.8m/s)((0.120kg)(2.86m)2+(60.0kg)(14cm×102m1cm)2)=157.91kgm2/s22.157kgm2=8.55rad/s2

Formula to calculate the maximum speed that the small mass object attains is,

    v1=ωr1

Here, v1 is the maximum speed that the small mass object attains.

Substitute 8.55rad/s2 for ω and 2.86m for r1 to find v1.

    v1=8.55rad/s2×2.86m=24m/s2

Conclusion:

Therefore, maximum speed that the small mass object attains is 24m/s2.

(b)

Expert Solution
Check Mark
To determine

Whether the small object move with constant acceleration while gaining speed.

Answer to Problem 10.47P

The acceleration of the small object changes while gaining speed.

Explanation of Solution

The rotational body has two components of acceleration one is radial acceleration that act towards the radius of the rotation circle while the tangential acceleration is tangent to the rotational circle at any point.

If the smaller mass moves under constant acceleration, it either moves in a straight line or in a parabolic path. However, its circular path signifies that the acceleration is not constant.

Conclusion:

Therefore, the acceleration of the small object changes while gaining speed.

(c)

Expert Solution
Check Mark
To determine

Whether the small object move with constant tangential acceleration.

Answer to Problem 10.47P

The tangential acceleration of the object is not constant.

Explanation of Solution

Write the expression for tangential acceleration

  at=rα

Here, at is the tangential acceleration, r is the radius of the circular path and α is the angular acceleration.

Since angular acceleration is not constant, tangential acceleration is also not constant. Refer part (d) for the reason for variable angular acceleration.

Conclusion:

Therefore, tangential acceleration of the object is not constant.

(d)

Expert Solution
Check Mark
To determine

Whether the trebuchet move with constant angular acceleration.

Answer to Problem 10.47P

The trebuchet does not move with constant angular acceleration.

Explanation of Solution

Formula to calculate the angular acceleration of the trebuchet and the torque is,

    τnet=Iα

Here, I is the moment of inertia and τnet  is the net torque.

The net torque is not constant as the lever arm of the gravitational force changes. Since torque changes, the angular acceleration must also change as given by the above equation.

Conclusion:

Therefore, the trebuchet doesn’t move with constant angular acceleration.

(e)

Expert Solution
Check Mark
To determine

Whether the trebuchet have constant momentum.

Answer to Problem 10.47P

The trebuchet doesn’t have constant momentum.

Explanation of Solution

The rotational angular momentum is the product of the linear momentum to the distance from the rotational axis.

Formula to calculate the angular momentum of the system is,

    L=Mω

Here, M is the total mass of the system and L is the angular momentum of the system.

Since the angular velocity changes, the angular momentum must also change as they are directly proportional.

Conclusion:

Therefore, the trebuchet doesn’t have constant momentum.

(f)

Expert Solution
Check Mark
To determine

Whether the trebuchet-Earth system have constant mechanical energy.

Answer to Problem 10.47P

The total mechanical energy of the trebuchet earth system is constant

Explanation of Solution

The total mechanical energy of the system is the sum of the potential energy and the kinetic energy of the body. Potential energy cause due to its position while the kinetic energy cause due to virtue of its motion.

The trebuchet-Earth system is rotated in clockwise direction that produces rotational kinetic energy as well as the potential energies of the two mass. Initially, both the masses are at rest and the system has no mechanical energy. But when the heavier mass lower down, the mechanical energy applied on the heavier mass is converted into the rotational energy of the system hence the total energy of the system is constant.

Conclusion:

Therefore, the total mechanical energy of the trebuchet earth system is constant.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!

Chapter 10 Solutions

Physics for Scientists and Engineers, Technology Update (No access codes included)

Ch. 10 - A grindstone increases in angular speed from 4.00...Ch. 10 - Suppose a cars standard tires are replaced with...Ch. 10 - Figure OQ10.6 shows a system of four particles...Ch. 10 - As shown in Figure OQ10.7, a cord is wrapped onto...Ch. 10 - A constant net torque is exerted on an object....Ch. 10 - Prob. 10.9OQCh. 10 - A toy airplane hangs from the ceiling at the...Ch. 10 - A solid aluminum sphere of radius R has moment of...Ch. 10 - Is it possible to change the translational kinetic...Ch. 10 - Must an object be rotating to have a nonzero...Ch. 10 - Suppose just two external forces act on a...Ch. 10 - Explain how you might use the apparatus described...Ch. 10 - Example 10.6 Angular Acceleration of a Wheel A...Ch. 10 - Explain why changing the axis of rotation of an...Ch. 10 - Suppose you have two eggs, one hard-boiled and the...Ch. 10 - Suppose you set your textbook sliding across a...Ch. 10 - (a) What is the angular speed of the second hand...Ch. 10 - One blade of a pair of scissors rotates...Ch. 10 - If you see an object rotating, is there...Ch. 10 - If a small sphere of mass M were placed at the end...Ch. 10 - Three objects of uniform densitya solid sphere, a...Ch. 10 - Which of the entries in Table 10.2 applies to...Ch. 10 - Figure CQ10.15 shows a side view of a childs...Ch. 10 - A person balances a meterstick in a horizontal...Ch. 10 - (a) Find the angular speed of the Earths rotation...Ch. 10 - A potters wheel moves uniformly from rest to an...Ch. 10 - During a certain time interval, the angular...Ch. 10 - A bar on a hinge starts from rest and rotates with...Ch. 10 - A wheel starts from rest and rotates with constant...Ch. 10 - A centrifuge in a medical laboratory rotates at an...Ch. 10 - An electric motor rotating a workshop grinding...Ch. 10 - A machine part rotates at an angular speed of...Ch. 10 - A dentists drill starts from rest. After 3.20 s of...Ch. 10 - Why is the following situation impossible?...Ch. 10 - A rotating wheel requires 3.00 s to rotate through...Ch. 10 - The tub of a washer goes into its spin cycle,...Ch. 10 - A spinning wheel is slowed down by a brake, giving...Ch. 10 - Review. Consider a tall building located on the...Ch. 10 - A racing car travels on a circular track of radius...Ch. 10 - Make an order-of-magnitude estimate of the number...Ch. 10 - A discus thrower (Fig. P10.9) accelerates a discus...Ch. 10 - Figure P10.18 shows the drive train of a bicycle...Ch. 10 - A wheel 2.00 m in diameter lies in a vertical...Ch. 10 - A car accelerates uniformly from rest and reaches...Ch. 10 - A disk 8.00 cm in radius rotates at a constant...Ch. 10 - Prob. 10.22PCh. 10 - A car traveling on a flat (unbanked), circular...Ch. 10 - A car traveling on a flat (unbanked), circular...Ch. 10 - In a manufacturing process, a large, cylindrical...Ch. 10 - Review. A small object with mass 4.00 kg moves...Ch. 10 - Find the net torque on the wheel in Figure P10.14...Ch. 10 - The fishing pole in Figure P10.28 makes an angle...Ch. 10 - An electric motor turns a flywheel through a drive...Ch. 10 - A grinding wheel is in the form of a uniform solid...Ch. 10 - A 150-kg merry-go-round in the shape of a uniform,...Ch. 10 - Review. A block of mass m1 = 2.00 kg and a block...Ch. 10 - A model airplane with mass 0.750 kg is tethered to...Ch. 10 - A disk having moment of inertia 100 kg m2 is free...Ch. 10 - The combination of an applied force and a friction...Ch. 10 - Review. Consider the system shown in Figure P10.36...Ch. 10 - A potters wheela thick stone disk of radius 0.500...Ch. 10 - Imagine that you stand tall and turn about a...Ch. 10 - A uniform, thin, solid door has height 2.20 m,...Ch. 10 - Two balls with masses M and m are connected by a...Ch. 10 - Figure P10.41 shows a side view of a car tire...Ch. 10 - Following the procedure used in Example 10.7,...Ch. 10 - Three identical thin rods, each of length L and...Ch. 10 - Rigid rods of negligible mass lying along the y...Ch. 10 - The four particles in Figure P10.45 are connected...Ch. 10 - Many machines employ cams for various purposes,...Ch. 10 - A war-wolf or trebuchet is a device used during...Ch. 10 - A horizontal 800-N merry-go-round is a solid disk...Ch. 10 - Big Ben, the nickname for the clock in Elizabeth...Ch. 10 - Consider two objects with m1 m2 connected by a...Ch. 10 - The top in Figure P10.51 has a moment of inertia...Ch. 10 - Why is the following situation impossible? In a...Ch. 10 - In Figure P10.53, the hanging object has a mass of...Ch. 10 - Review. A thin, cylindrical rod = 24.0 cm long...Ch. 10 - Review. An object with a mass of m = 5.10 kg is...Ch. 10 - This problem describes one experimental method for...Ch. 10 - A uniform solid disk of radius R and mass M is...Ch. 10 - The head of a grass string trimmer has 100 g of...Ch. 10 - A cylinder of mass 10.0 kg rolls without slipping...Ch. 10 - A solid sphere is released from height h from the...Ch. 10 - (a) Determine the acceleration of the center of...Ch. 10 - A smooth cube of mass m and edge length r slides...Ch. 10 - A uniform solid disk and a uniform hoop are placed...Ch. 10 - A tennis ball is a hollow sphere with a thin wall....Ch. 10 - A metal can containing condensed mushroom soup has...Ch. 10 - As shown in Figure 10.13 on page 306, toppling...Ch. 10 - Review. A 4.00-m length of light nylon cord is...Ch. 10 - An elevator system in a tall building consists of...Ch. 10 - A shaft is turning at 65.0 rad/s at time t = 0....Ch. 10 - A shaft is turning at angular speed at time t =...Ch. 10 - Review. A mixing beater consists of three thin...Ch. 10 - The hour hand and the minute hand of Big Ben, the...Ch. 10 - A long, uniform rod of length L and mass M is...Ch. 10 - A bicycle is turned upside down while its owner...Ch. 10 - A bicycle is turned upside down while its owner...Ch. 10 - Prob. 10.76APCh. 10 - Review. As shown in Figure P10.77, two blocks are...Ch. 10 - Review. A string is wound around a uniform disk of...Ch. 10 - The reel shown in Figure P10.79 has radius R and...Ch. 10 - A common demonstration, illustrated in Figure...Ch. 10 - A uniform solid sphere of radius r is placed on...Ch. 10 - Review. A spool of wire of mass M and radius R is...Ch. 10 - A solid sphere of mass m and radius r rolls...Ch. 10 - A thin rod of mass 0.630 kg and length 1.24 m is...Ch. 10 - Prob. 10.85APCh. 10 - Review. A clown balances a small spherical grape...Ch. 10 - A plank with a mass M = 6.00 kg rests on top of...Ch. 10 - As a gasoline engine operates, a flywheel turning...Ch. 10 - As a result of friction, the angular speed of a...Ch. 10 - To find the total angular displacement during the...Ch. 10 - A spool of thread consists of a cylinder of radius...Ch. 10 - A cord is wrapped around a pulley that is shaped...Ch. 10 - A merry-go-round is stationary. A clog is running...Ch. 10 - A uniform, hollow, cylindrical spool has inside...
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
What is Torque? | Physics | Extraclass.com; Author: Extraclass Official;https://www.youtube.com/watch?v=zXxrAJld9mo;License: Standard YouTube License, CC-BY