   # State whether each of the following samples of matter is a gas. If there is not enough information for you to decide, write “insufficient information.” (a) A material is in a steel tank at 100 atm pressure. When the tank is opened to the atmosphere, the material suddenly expands, increasing its volume by 1%. (b) A 1.0-mL sample of material weighs 8.2 g. (c) The material is transparent and pale green in color. (d) One cubic meter of material contains as many molecules as 1.0 m 3 of air at the same temperature and pressure. ### Chemistry & Chemical Reactivity

9th Edition
John C. Kotz + 3 others
Publisher: Cengage Learning
ISBN: 9781133949640

#### Solutions

Chapter
Section ### Chemistry & Chemical Reactivity

9th Edition
John C. Kotz + 3 others
Publisher: Cengage Learning
ISBN: 9781133949640
Chapter 10, Problem 111SCQ
Textbook Problem
1 views

## State whether each of the following samples of matter is a gas. If there is not enough information for you to decide, write “insufficient information.” (a) A material is in a steel tank at 100 atm pressure. When the tank is opened to the atmosphere, the material suddenly expands, increasing its volume by 1%. (b) A 1.0-mL sample of material weighs 8.2 g. (c) The material is transparent and pale green in color. (d) One cubic meter of material contains as many molecules as 1.0 m3 of air at the same temperature and pressure.

(a)

Interpretation Introduction

Interpretation:

For the given set of samples of matter it should be determined that whether they constitute a gas or not with reasons.

Concept introduction:

Ideal gas Equation:

Any gas can be described by using four terms namely pressure, volume, temperature and the amount of gas. Thus combining three laws namely Boyle’s, Charles’s Law and Avogadro’s Hypothesis the following equation could be obtained.  It is referred as ideal gas equation.

nTPV = RnTPPV = nRTwhere,n = moles of gasP = pressureT = temperatureR = gas constant

Under some conditions gases don not behave like ideal gas that is they deviate from their ideal gas properties.  At lower temperature and at high pressures the gas tends to deviate and behave like real gases.

Boyle’s Law:

At given constant temperature conditions the mass of given ideal gas in inversely proportional to its volume.

Charles’s Law:

At given constant pressure conditions the volume of ideal gas is directly proportional to the absolute temperature.

Two equal volumes of gases with same temperature and pressure conditions tend to have same number of molecules with it.

Molar mass: The molar mass of a substance is determined by dividing the given mass of substance by the amount of the substance.

Partial pressure: The partial pressure for any gas can be obtained by multiplication of total pressure of the gas with the mole fraction of the gas present in that total mixture.

Mole fraction: It defines the amount of particular species present in the mixture. It is obtained by dividing the mole of gas by the total mole of gas present in the mixture.

### Explanation of Solution

The given sample cannot be considered as since gases have property of expanding to inf...

(b)

Interpretation Introduction

Interpretation:

For the given set of samples of matter it should be determined that whether they constitute a gas or not with reasons.

Concept introduction:

Ideal gas Equation:

Any gas can be described by using four terms namely pressure, volume, temperature and the amount of gas.  Thus combining three laws namely Boyle’s, Charles’s Law and Avogadro’s Hypothesis the following equation could be obtained.  It is referred as ideal gas equation.

nTPV = RnTPPV = nRTwhere,n = moles of gasP = pressureT = temperatureR = gas constant

Under some conditions gases don not behave like ideal gas that is they deviate from their ideal gas properties.  At lower temperature and at high pressures the gas tends to deviate and behave like real gases.

Boyle’s Law:

At given constant temperature conditions the mass of given ideal gas in inversely proportional to its volume.

Charles’s Law:

At given constant pressure conditions the volume of ideal gas is directly proportional to the absolute temperature.

Two equal volumes of gases with same temperature and pressure conditions tend to have same number of molecules with it.

Molar mass: The molar mass of a substance is determined by dividing the given mass of substance by the amount of the substance.

Partial pressure: The partial pressure for any gas can be obtained by multiplication of total pressure of the gas with the mole fraction of the gas present in that total mixture.

Mole fraction: It defines the amount of particular species present in the mixture. It is obtained by dividing the mole of gas by the total mole of gas present in the mixture.

(c)

Interpretation Introduction

Interpretation:

For the given set of samples of matter it should be determined that whether they constitute a gas or not with reasons.

Concept introduction:

Ideal gas Equation:

Any gas can be described by using four terms namely pressure, volume, temperature and the amount of gas.  Thus combining three laws namely Boyle’s, Charles’s Law and Avogadro’s Hypothesis the following equation could be obtained.  It is referred as ideal gas equation.

nTPV = RnTPPV = nRTwhere,n = moles of gasP = pressureT = temperatureR = gas constant

Under some conditions gases don not behave like ideal gas that is they deviate from their ideal gas properties.  At lower temperature and at high pressures the gas tends to deviate and behave like real gases.

Boyle’s Law:

At given constant temperature conditions the mass of given ideal gas in inversely proportional to its volume.

Charles’s Law:

At given constant pressure conditions the volume of ideal gas is directly proportional to the absolute temperature.

Two equal volumes of gases with same temperature and pressure conditions tend to have same number of molecules with it.

Molar mass: The molar mass of a substance is determined by dividing the given mass of substance by the amount of the substance.

Partial pressure: The partial pressure for any gas can be obtained by multiplication of total pressure of the gas with the mole fraction of the gas present in that total mixture.

Mole fraction: It defines the amount of particular species present in the mixture. It is obtained by dividing the mole of gas by the total mole of gas present in the mixture.

(d)

Interpretation Introduction

Interpretation:

For the given set of samples of matter it should be determined that whether they constitute a gas or not with reasons.

Concept introduction:

Ideal gas Equation:

Any gas can be described by using four terms namely pressure, volume, temperature and the amount of gas.  Thus combining three laws namely Boyle’s, Charles’s Law and Avogadro’s Hypothesis the following equation could be obtained.  It is referred as ideal gas equation.

nTPV = RnTPPV = nRTwhere,n = moles of gasP = pressureT = temperatureR = gas constant

Under some conditions gases don not behave like ideal gas that is they deviate from their ideal gas properties.  At lower temperature and at high pressures the gas tends to deviate and behave like real gases.

Boyle’s Law:

At given constant temperature conditions the mass of given ideal gas in inversely proportional to its volume.

Charles’s Law:

At given constant pressure conditions the volume of ideal gas is directly proportional to the absolute temperature.

Two equal volumes of gases with same temperature and pressure conditions tend to have same number of molecules with it.

Molar mass: The molar mass of a substance is determined by dividing the given mass of substance by the amount of the substance.

Partial pressure: The partial pressure for any gas can be obtained by multiplication of total pressure of the gas with the mole fraction of the gas present in that total mixture.

Mole fraction: It defines the amount of particular species present in the mixture. It is obtained by dividing the mole of gas by the total mole of gas present in the mixture.

### Still sussing out bartleby?

Check out a sample textbook solution.

See a sample solution

#### The Solution to Your Study Problems

Bartleby provides explanations to thousands of textbook problems written by our experts, many with advanced degrees!

Get Started

Find more solutions based on key concepts
What molecular formula corresponds to each of the following structural formulas?

General Chemistry - Standalone book (MindTap Course List)

Water balance is governed by the a. liver b. kidneys c. brain d. b and c

Nutrition: Concepts and Controversies - Standalone book (MindTap Course List)

What is the difference between the daily and annual motions of the Sun?

Horizons: Exploring the Universe (MindTap Course List)

Describe what happens during transformation.

Organic And Biological Chemistry

How do fishes breathe?

Oceanography: An Invitation To Marine Science, Loose-leaf Versin

An experimenter wishes to generate in air a sound wave that has a displacement amplitude of 5.50 106 m. The pr...

Physics for Scientists and Engineers, Technology Update (No access codes included) 