Chemistry: An Atoms First Approach
Chemistry: An Atoms First Approach
2nd Edition
ISBN: 9781305079243
Author: Steven S. Zumdahl, Susan A. Zumdahl
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Chapter 10, Problem 79E

Consider the following solutions:

0.010 m Na3PO4 in water

0.020 m CaBr2 in water

0.020 m KCl in water

0.020 m HF in water (HF is a weak acid.)

a. Assuming complete dissociation of the soluble salts, which solution(s) would have the same boiling point as 0.040 m C6H12O6 in water? C6H12O6 is a nonelectrolyte.

b. Which solution would have the highest vapor pressure at 28°C?

c. Which solution would have the largest freezing-point depression?

a)

Expert Solution
Check Mark
Interpretation Introduction

Interpretation: Among the given set of solutions, the one with the same boiling point of Glucose, highest vapor pressure and largest freezing point depression has to be determined.

Concept Introduction:

Colligative properties of a substance include the depression in the freezing point, elevation of boiling-point and osmotic pressure. These are dependant only on the number present and not based on the solute particles present in an ideal solution.

The vapor pressure of solution can be calculated from Raoult’s law,

Psolutionsolventsolvent

Where, Psolution   = observed vapor pressure of the solution

χsolvent    = mole fraction of solvent

            solvent = vapor pressure of pure solvent

The freezing point depression can be calculated from the equation,

ΔT=Kmsolute

Where, ΔT =change in freezing point depression

K = molal freezing point depression/boiling point constant

msolute = molality of solute.

Answer to Problem 79E

Answer

0.010mNa3PO4and0.020mKCl has the same boiling point as 0.040mC6H2O6 .

Explanation of Solution

To identify the solution that has the same boiling point as 0.040mC6H2O6

0.010mNa3PO4and0.020mKCl has the same boiling point as 0.040mC6H2O6 .

Na3PO4(s)3Na+(aq)+PO43-(aq)i=4.0CaBr2(s)Ca2+(aq)+2Br-(aq)i=3.0KCl(s)K+(aq)+Cl-(aq)i=2.0

Assuming complete dissociation, the effective particle concentrations of solution are,

4.0(0.010molal)=0.040molalNa3PO43.0(0.020molal)=0.060molalCaBr22.0(0.020molal)=0.040molalKCl

Slightly greater 0.020molalHF solution because HF is weak acid and it partially dissociates in Water.

Therefore, 0.010mNa3PO4and0.020mKCl has the same boiling point as 0.040mC6H2O6 .

b)

Expert Solution
Check Mark
Interpretation Introduction

Interpretation: Among the given set of solutions, the one with the same boiling point of Glucose, highest vapor pressure and largest freezing point depression has to be determined.

Concept Introduction:

Colligative properties of a substance include the depression in the freezing point, elevation of boiling-point and osmotic pressure. These are dependant only on the number present and not based on the solute particles present in an ideal solution.

The vapor pressure of solution can be calculated from Raoult’s law,

Psolutionsolventsolvent

Where, Psolution   = observed vapor pressure of the solution

χsolvent    = mole fraction of solvent

            solvent = vapor pressure of pure solvent

The freezing point depression can be calculated from the equation,

ΔT=Kmsolute

Where, ΔT =change in freezing point depression

K = molal freezing point depression/boiling point constant

msolute = molality of solute.

Answer to Problem 79E

Answer

0.020mHF has the highest vapor pressure among the given solutions.

Explanation of Solution

To identify which solution has highest vapor pressure at 28°C

0.020mHF has the highest vapor pressure among the given solutions.

As the concentration of solute decreases, the vapor pressure of the solvent gets increases because the mole fraction gets increased.

Hence, 0.020molalHF has the highest vapor pressure since the effective particle concentration of 0.020molalHF is very small.

c)

Expert Solution
Check Mark
Interpretation Introduction

Interpretation: Among the given set of solutions, the one with the same boiling point of Glucose, highest vapor pressure and largest freezing point depression has to be determined.

Concept Introduction:

Colligative properties of a substance include the depression in the freezing point, elevation of boiling-point and osmotic pressure. These are dependant only on the number present and not based on the solute particles present in an ideal solution.

The vapor pressure of solution can be calculated from Raoult’s law,

Psolutionsolventsolvent

Where, Psolution   = observed vapor pressure of the solution

χsolvent    = mole fraction of solvent

            solvent = vapor pressure of pure solvent

The freezing point depression can be calculated from the equation,

ΔT=Kmsolute

Where, ΔT =change in freezing point depression

                                        K = molal freezing point depression/boiling point constant

msolute = molality of solute.

Answer to Problem 79E

Answer

0.020mCaBr2 has the largest vapor pressure among the given solutions.

Explanation of Solution

To identify which solution has largest freezing point depression.

0.020mCaBr2 has the largest vapor pressure among the given solutions.

The largest freezing point depression is seen in 0.020mCaBr2 because of its large effective particle concentration.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!

Chapter 10 Solutions

Chemistry: An Atoms First Approach

Ch. 10 - Prob. 1ALQCh. 10 - Prob. 2ALQCh. 10 - Prob. 3ALQCh. 10 - Prob. 4ALQCh. 10 - You have read that adding a solute to a solvent...Ch. 10 - Prob. 6ALQCh. 10 - Prob. 7ALQCh. 10 - Prob. 8ALQCh. 10 - Prob. 9ALQCh. 10 - Prob. 10ALQCh. 10 - Rubbing alcohol contains 585 g isopropanol...Ch. 10 - Prob. 12SRCh. 10 - Prob. 13SRCh. 10 - Prob. 14SRCh. 10 - Calculate the sodium ion concentration when 70.0...Ch. 10 - Write equations showing the ions present after the...Ch. 10 - Prob. 17QCh. 10 - The weak electrolyte NH3(g) does not obey Henrys...Ch. 10 - The two beakers in the sealed container...Ch. 10 - The following plot shows the vapor pressure of...Ch. 10 - Prob. 21QCh. 10 - Prob. 22QCh. 10 - Prob. 23QCh. 10 - Prob. 24QCh. 10 - Prob. 25QCh. 10 - Prob. 26QCh. 10 - Explain the terms isotonic solution, crenation,...Ch. 10 - Prob. 28QCh. 10 - Prob. 29ECh. 10 - Prob. 30ECh. 10 - Common commercial acids and bases are aqueous...Ch. 10 - In lab you need to prepare at least 100 mL of each...Ch. 10 - Prob. 33ECh. 10 - Prob. 34ECh. 10 - Prob. 35ECh. 10 - Calculate the molarity and mole fraction of...Ch. 10 - Prob. 37ECh. 10 - Prob. 38ECh. 10 - Prob. 39ECh. 10 - Prob. 40ECh. 10 - Although Al(OH)3 is insoluble in water, NaOH is...Ch. 10 - Prob. 42ECh. 10 - Prob. 43ECh. 10 - Prob. 44ECh. 10 - Prob. 45ECh. 10 - Which ion in each of the following pairs would you...Ch. 10 - Rationalize the trend in water solubility for the...Ch. 10 - Prob. 48ECh. 10 - The solubility of nitrogen in water is 8.21 104...Ch. 10 - Calculate the solubility of O2 in water at a...Ch. 10 - Glycerin, C3H8O3, is a nonvolatile liquid. What is...Ch. 10 - Prob. 52ECh. 10 - The normal boiling point of diethyl ether is...Ch. 10 - At a certain temperature, the vapor pressure of...Ch. 10 - A solution is made by dissolving 25.8 g urea...Ch. 10 - A solution of sodium chloride in water has a vapor...Ch. 10 - Prob. 57ECh. 10 - A solution is prepared by mixing 0.0300 mole of...Ch. 10 - What is the composition of a methanol...Ch. 10 - Benzene and toluene form an ideal solution....Ch. 10 - Which of the following will have the lowest total...Ch. 10 - Prob. 62ECh. 10 - Match the vapor pressure diagrams with the...Ch. 10 - The vapor pressures of several solutions of...Ch. 10 - A solution is prepared by dissolving 27.0 g urea,...Ch. 10 - A 2.00-g sample of a large biomolecule was...Ch. 10 - What mass of glycerin (C3H8O3), a nonelectrolyte,...Ch. 10 - The freezing point of 1-butanol is 25.50C and Kf...Ch. 10 - Prob. 69ECh. 10 - What volume of ethylene glycol (C2H6O2), a...Ch. 10 - Reserpine is a natural product isolated from the...Ch. 10 - A solution contains 3.75 g of a nonvolatile pure...Ch. 10 - a. Calculate the freezing-point depression and...Ch. 10 - Erythrocytes are red blood cells containing...Ch. 10 - Prob. 75ECh. 10 - Prob. 76ECh. 10 - Prob. 77ECh. 10 - Prob. 78ECh. 10 - Consider the following solutions: 0.010 m Na3PO4...Ch. 10 - From the following: pure water solution of...Ch. 10 - Prob. 81ECh. 10 - Prob. 82ECh. 10 - Prob. 83ECh. 10 - Consider the following representations of an ionic...Ch. 10 - Prob. 85ECh. 10 - Prob. 86ECh. 10 - Use the following data for three aqueous solutions...Ch. 10 - The freezing-point depression of a 0.091-m...Ch. 10 - Prob. 89ECh. 10 - A 0.500-g sample of a compound is dissolved in...Ch. 10 - The solubility of benzoic acid (HC7H5O2), is 0.34...Ch. 10 - Prob. 92AECh. 10 - Prob. 94AECh. 10 - Explain the following on the basis of the behavior...Ch. 10 - Prob. 96AECh. 10 - Prob. 97AECh. 10 - Prob. 98AECh. 10 - A solution is made by mixing 50.0 g acetone...Ch. 10 - Prob. 100AECh. 10 - Prob. 101AECh. 10 - Prob. 102AECh. 10 - An unknown compound contains only carbon,...Ch. 10 - Prob. 104AECh. 10 - Prob. 105AECh. 10 - Prob. 106AECh. 10 - Prob. 107AECh. 10 - Prob. 108AECh. 10 - Patients undergoing an upper gastrointestinal...Ch. 10 - Prob. 110CWPCh. 10 - Prob. 111CWPCh. 10 - For each of the following pairs, predict which...Ch. 10 - The normal boiling point of methanol is 64.7C. A...Ch. 10 - A solution is prepared by mixing 1.000 mole of...Ch. 10 - Prob. 115CWPCh. 10 - A 4.7 102 mg sample of a protein is dissolved in...Ch. 10 - Prob. 117CWPCh. 10 - The vapor pressure of pure benzene is 750.0 torr...Ch. 10 - Prob. 119CPCh. 10 - Plants that thrive in salt water must have...Ch. 10 - You make 20.0 g of a sucrose (C12H22O11) and NaCl...Ch. 10 - Prob. 122CPCh. 10 - The vapor in equilibrium with a pentane-hexane...Ch. 10 - Prob. 124CPCh. 10 - Prob. 125CPCh. 10 - Prob. 126CPCh. 10 - Prob. 127CPCh. 10 - You have a solution of two volatile liquids, A and...Ch. 10 - In some regions of the southwest United States,...Ch. 10 - Prob. 130IPCh. 10 - An aqueous solution containing 0.250 mole of Q, a...Ch. 10 - Anthraquinone contains only carbon, hydrogen, and...
Knowledge Booster
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
  • Consider two hypothetical pure substances, AB(s) and XY(s). When equal molar amounts of these substances are placed in separate 500-mL samples of water, they undergo the following reactions: AB(s)A+(aq)+B(aq)XY(s)XY(aq) a Which solution would you expect to have the lower boiling point? Why? b Would you expect the vapor pressures of the two solutions to be equal? If not, which one would you expect to have the higher vapor pressure? c Describe a procedure that would make the two solutions have the same boiling point. d If you took 250 mL of the AB(aq) solution prepared above, would it have the same boiling point as the original solution? Be sure to explain your answer. e The container of XY(aq) is left out on the bench top for several days, which allows some of the water to evaporate from the solution. How would the melting point of this solution compare to the melting point of the original solution?
    A 2.00-g sample of a large biomolecule was dissolved in 15.0 g carbon tetrachloride. The boiling point of this solution was determined to be 77 .85C. Calculate the molar mass of the biomolecule. For carbon tetrachloride, the boiling-point constant is 5.03C kg/mol, and the boiling point of pure carbon tetrachloride is 76.50C.
    Carbon tetrachloride (CCl4) boils at 76.8C and has a density of 1.59 g/mL. (a) A solution prepared by dissolving 0.287 mol of a nonelectrolyte in 255 mL of CCl4 boils at 80.3C. What is the boiling point constant (kb) for CCl4? (b) Another solution is prepared by dissolving 37.1 g of an electrolyte (MM=167g/mol) in 244 mL of CCl4. The resulting solution boils at 85.2C. What is i for the electrolyte?
    Recommended textbooks for you
  • Chemistry: An Atoms First Approach
    Chemistry
    ISBN:9781305079243
    Author:Steven S. Zumdahl, Susan A. Zumdahl
    Publisher:Cengage Learning
    Chemistry
    Chemistry
    ISBN:9781305957404
    Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
    Publisher:Cengage Learning
    Chemistry
    Chemistry
    ISBN:9781133611097
    Author:Steven S. Zumdahl
    Publisher:Cengage Learning
  • General Chemistry - Standalone book (MindTap Cour...
    Chemistry
    ISBN:9781305580343
    Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
    Publisher:Cengage Learning
    Chemistry: Principles and Practice
    Chemistry
    ISBN:9780534420123
    Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
    Publisher:Cengage Learning
    Chemistry & Chemical Reactivity
    Chemistry
    ISBN:9781337399074
    Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
    Publisher:Cengage Learning
  • Chemistry: An Atoms First Approach
    Chemistry
    ISBN:9781305079243
    Author:Steven S. Zumdahl, Susan A. Zumdahl
    Publisher:Cengage Learning
    Chemistry
    Chemistry
    ISBN:9781305957404
    Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
    Publisher:Cengage Learning
    Chemistry
    Chemistry
    ISBN:9781133611097
    Author:Steven S. Zumdahl
    Publisher:Cengage Learning
    General Chemistry - Standalone book (MindTap Cour...
    Chemistry
    ISBN:9781305580343
    Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
    Publisher:Cengage Learning
    Chemistry: Principles and Practice
    Chemistry
    ISBN:9780534420123
    Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
    Publisher:Cengage Learning
    Chemistry & Chemical Reactivity
    Chemistry
    ISBN:9781337399074
    Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
    Publisher:Cengage Learning
    Solutions: Crash Course Chemistry #27; Author: Crash Course;https://www.youtube.com/watch?v=9h2f1Bjr0p4;License: Standard YouTube License, CC-BY