BuyFindarrow_forward

Mathematical Applications for the ...

11th Edition
Ronald J. Harshbarger + 1 other
ISBN: 9781305108042

Solutions

Chapter
Section
BuyFindarrow_forward

Mathematical Applications for the ...

11th Edition
Ronald J. Harshbarger + 1 other
ISBN: 9781305108042
Textbook Problem

Find the absolute maximum and minimum for

f ( x ) = 2 x 3 15 x 2 + 3 on the interval [ 2 , 8 ] .

To determine

To calculate: The absolute maximum and minimum for the function f(x)=2x315x2+3 on interval [2,8].

Explanation

Given Information:

The provided equation is f(x)=2x315x2+3 and the interval is [2,8].

Formula used:

To find absolute maximum and minimum of a function,

1. Set the first derivative of the function to zero, f(x)=0, to find the critical values of the function.

2. Substitute the critical values into f(x).

3. Substitute the end points into f(x).

The maximum value is absolute maximum and the minimum value is absolute minimum.

Calculation:

Consider the provided equation,

f(x)=2x315x2+3

Calculate the first derivative of the above function with respect to x:

f(x)=6x230x=6x(x5)

Set f(x)=0.

6x(x5)=0

Thus, either 6x=0 or (x5)=0.

First consider 6x=0.

Simplify for x,

6x=0x=0

Now, consider (x5)=0.

Solve for x,

x5=0x=5

Thus, the critical values are at x=0 and x=5.

Substitute 0 for x in f(x)=2x315x2+3:

f(x)=2x315x2+3=2(0)315(0)2+3=3

Substitute 5 for x in f(x)=2x315x2+3

Still sussing out bartleby?

Check out a sample textbook solution.

See a sample solution

The Solution to Your Study Problems

Bartleby provides explanations to thousands of textbook problems written by our experts, many with advanced degrees!

Get Started

Chapter 10 Solutions

Show all chapter solutions add
Sect-10.1 P-7ESect-10.1 P-8ESect-10.1 P-9ESect-10.1 P-10ESect-10.1 P-11ESect-10.1 P-12ESect-10.1 P-13ESect-10.1 P-14ESect-10.1 P-15ESect-10.1 P-16ESect-10.1 P-17ESect-10.1 P-18ESect-10.1 P-19ESect-10.1 P-20ESect-10.1 P-21ESect-10.1 P-22ESect-10.1 P-23ESect-10.1 P-24ESect-10.1 P-25ESect-10.1 P-26ESect-10.1 P-27ESect-10.1 P-28ESect-10.1 P-29ESect-10.1 P-30ESect-10.1 P-31ESect-10.1 P-32ESect-10.1 P-33ESect-10.1 P-34ESect-10.1 P-35ESect-10.1 P-36ESect-10.1 P-37ESect-10.1 P-38ESect-10.1 P-39ESect-10.1 P-40ESect-10.1 P-41ESect-10.1 P-42ESect-10.1 P-43ESect-10.1 P-44ESect-10.1 P-45ESect-10.1 P-46ESect-10.1 P-47ESect-10.1 P-48ESect-10.1 P-49ESect-10.1 P-50ESect-10.1 P-51ESect-10.1 P-52ESect-10.1 P-53ESect-10.1 P-54ESect-10.1 P-55ESect-10.1 P-56ESect-10.1 P-57ESect-10.1 P-58ESect-10.1 P-59ESect-10.1 P-60ESect-10.1 P-61ESect-10.1 P-62ESect-10.1 P-63ESect-10.1 P-64ESect-10.1 P-65ESect-10.2 P-1CPSect-10.2 P-2CPSect-10.2 P-3CPSect-10.2 P-4CPSect-10.2 P-1ESect-10.2 P-2ESect-10.2 P-3ESect-10.2 P-4ESect-10.2 P-5ESect-10.2 P-6ESect-10.2 P-7ESect-10.2 P-8ESect-10.2 P-9ESect-10.2 P-10ESect-10.2 P-11ESect-10.2 P-12ESect-10.2 P-13ESect-10.2 P-14ESect-10.2 P-15ESect-10.2 P-16ESect-10.2 P-17ESect-10.2 P-18ESect-10.2 P-19ESect-10.2 P-20ESect-10.2 P-21ESect-10.2 P-22ESect-10.2 P-23ESect-10.2 P-24ESect-10.2 P-25ESect-10.2 P-26ESect-10.2 P-27ESect-10.2 P-28ESect-10.2 P-29ESect-10.2 P-30ESect-10.2 P-31ESect-10.2 P-32ESect-10.2 P-33ESect-10.2 P-34ESect-10.2 P-35ESect-10.2 P-36ESect-10.2 P-37ESect-10.2 P-38ESect-10.2 P-39ESect-10.3 P-1CPSect-10.3 P-2CPSect-10.3 P-3CPSect-10.3 P-4CPSect-10.3 P-1ESect-10.3 P-2ESect-10.3 P-3ESect-10.3 P-5ESect-10.3 P-6ESect-10.3 P-7ESect-10.3 P-8ESect-10.3 P-9ESect-10.3 P-10ESect-10.3 P-11ESect-10.3 P-12ESect-10.3 P-13ESect-10.3 P-14ESect-10.3 P-15ESect-10.3 P-16ESect-10.3 P-17ESect-10.3 P-18ESect-10.3 P-19ESect-10.3 P-20ESect-10.3 P-21ESect-10.3 P-22ESect-10.3 P-23ESect-10.3 P-24ESect-10.3 P-25ESect-10.3 P-26ESect-10.3 P-27ESect-10.3 P-28ESect-10.3 P-29ESect-10.3 P-30ESect-10.3 P-33ESect-10.3 P-34ESect-10.3 P-35ESect-10.3 P-36ESect-10.3 P-37ESect-10.3 P-38ESect-10.3 P-39ESect-10.3 P-40ESect-10.3 P-41ESect-10.3 P-42ESect-10.3 P-43ESect-10.3 P-47ESect-10.3 P-48ESect-10.3 P-49ESect-10.4 P-1CPSect-10.4 P-2CPSect-10.4 P-3CPSect-10.4 P-1ESect-10.4 P-2ESect-10.4 P-3ESect-10.4 P-4ESect-10.4 P-5ESect-10.4 P-6ESect-10.4 P-7ESect-10.4 P-8ESect-10.4 P-9ESect-10.4 P-10ESect-10.4 P-11ESect-10.4 P-12ESect-10.4 P-13ESect-10.4 P-14ESect-10.4 P-15ESect-10.4 P-16ESect-10.4 P-17ESect-10.4 P-18ESect-10.4 P-19ESect-10.4 P-20ESect-10.4 P-21ESect-10.4 P-22ESect-10.4 P-23ESect-10.4 P-24ESect-10.4 P-25ESect-10.4 P-26ESect-10.4 P-27ESect-10.4 P-28ESect-10.4 P-29ESect-10.4 P-30ESect-10.4 P-31ESect-10.4 P-32ESect-10.4 P-33ESect-10.5 P-1CPSect-10.5 P-2CPSect-10.5 P-1ESect-10.5 P-2ESect-10.5 P-3ESect-10.5 P-4ESect-10.5 P-5ESect-10.5 P-6ESect-10.5 P-7ESect-10.5 P-8ESect-10.5 P-9ESect-10.5 P-10ESect-10.5 P-11ESect-10.5 P-12ESect-10.5 P-13ESect-10.5 P-14ESect-10.5 P-15ESect-10.5 P-16ESect-10.5 P-17ESect-10.5 P-18ESect-10.5 P-19ESect-10.5 P-20ESect-10.5 P-21ESect-10.5 P-22ESect-10.5 P-23ESect-10.5 P-24ESect-10.5 P-25ESect-10.5 P-26ESect-10.5 P-27ESect-10.5 P-28ESect-10.5 P-29ESect-10.5 P-30ESect-10.5 P-31ESect-10.5 P-32ESect-10.5 P-33ESect-10.5 P-34ESect-10.5 P-35ESect-10.5 P-36ESect-10.5 P-37ESect-10.5 P-38ESect-10.5 P-39ESect-10.5 P-40ESect-10.5 P-41ESect-10.5 P-42ESect-10.5 P-43ECh-10 P-1RECh-10 P-2RECh-10 P-3RECh-10 P-4RECh-10 P-5RECh-10 P-6RECh-10 P-7RECh-10 P-8RECh-10 P-9RECh-10 P-10RECh-10 P-11RECh-10 P-12RECh-10 P-13RECh-10 P-14RECh-10 P-15RECh-10 P-16RECh-10 P-17RECh-10 P-18RECh-10 P-19RECh-10 P-20RECh-10 P-21RECh-10 P-22RECh-10 P-23RECh-10 P-24RECh-10 P-25RECh-10 P-26RECh-10 P-27RECh-10 P-28RECh-10 P-29RECh-10 P-30RECh-10 P-31RECh-10 P-32RECh-10 P-33RECh-10 P-34RECh-10 P-35RECh-10 P-36RECh-10 P-37RECh-10 P-38RECh-10 P-39RECh-10 P-40RECh-10 P-41RECh-10 P-42RECh-10 P-43RECh-10 P-44RECh-10 P-45RECh-10 P-46RECh-10 P-47RECh-10 P-48RECh-10 P-49RECh-10 P-50RECh-10 P-51RECh-10 P-52RECh-10 P-53RECh-10 P-54RECh-10 P-55RECh-10 P-1TCh-10 P-2TCh-10 P-3TCh-10 P-4TCh-10 P-5TCh-10 P-6TCh-10 P-7TCh-10 P-8TCh-10 P-9TCh-10 P-10TCh-10 P-11TCh-10 P-12TCh-10 P-13TCh-10 P-14TCh-10 P-15TCh-10 P-16TCh-10 P-17T

Additional Math Solutions

Find more solutions based on key concepts

Show solutions add

Find the slope of the line through P and Q. 10. P(1, 4), Q(6, 0)

Single Variable Calculus: Early Transcendentals, Volume I

In Exercises 63-68, rationalize the denominator. 68. 2xy

Applied Calculus for the Managerial, Life, and Social Sciences: A Brief Approach

Prove the following identities. 2cos22=sin21cos

Trigonometry (MindTap Course List)

Finding an Indefinite Integral In Exercises 1-6, find the indefinite integral. 10xdx

Calculus: Early Transcendental Functions (MindTap Course List)

= _____. 0 does not exist

Study Guide for Stewart's Single Variable Calculus: Early Transcendentals, 8th

Factor each polynomial completely. 3x+6y

College Algebra (MindTap Course List)

What is the primary factor that determines when it is time to change phases?

Research Methods for the Behavioral Sciences (MindTap Course List)