Vector Mechanics for Engineers: Statics
Vector Mechanics for Engineers: Statics
12th Edition
ISBN: 9781259977268
Author: Ferdinand P. Beer, E. Russell Johnston Jr., David Mazurek
Publisher: McGraw-Hill Education
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 10.1, Problem 10.53P

Using the method of virtual work, determine separately the force and couple representing the reaction at A.

Chapter 10.1, Problem 10.53P, Using the method of virtual work, determineseparately the force and couple representing thereaction

Fig. P10.53 and P10.54

Expert Solution & Answer
Check Mark
To determine

Find the force representing the reaction at A using the virtual work method.

Find the couple representing the reaction at A using the virtual work method.

Answer to Problem 10.53P

The force representing the reaction at A is 250N()_.

The couple representing the reaction at A is 450Nm(Counterclockwise)_.

Explanation of Solution

Find the force at A;

Show the free-body diagram of the continuous beam as in Figure 1.

Vector Mechanics for Engineers: Statics, Chapter 10.1, Problem 10.53P , additional homework tip  1

Consider the member AB is horizontal.

The vertical displacement at point A is δyA.

Find the vertical displacement (δyA) at A with respect to vertical displacement (δyB) at B as follows;

δyA=δyB

Find the vertical displacement (δyC) at C with respect to vertical displacement (δyB) at B as follows;

δyB2.4=δyC1.5δyC=1.52.4δyB=58δyB

Find the vertical displacement (δyE) at E with respect to vertical displacement (δyB) at B as follows;

δyB2.4=δyE1.2δyE=1.22.4δyB=δyB2

Find the vertical displacement (δyF) at F with respect to vertical displacement (δyB) at B as follows;

δyE1.8=δyF1.5δyF=1.51.8δyE=56(δyB2)=512δyB

Use the concept of virtual work;

δU=0;AδyA+800δyC600δyF=0

Substitute δyB for δyA, 58δyB for δyC, and 512δyB for δyF.

AδyB+800(58δyB)600(512δyB)=0A+500250=0A=250N()

Therefore, the force representing the reaction at A is 250N()_.

Find the couple at A;

Show the free-body diagram of the continuous beam as in Figure 2.

Vector Mechanics for Engineers: Statics, Chapter 10.1, Problem 10.53P , additional homework tip  2

Rotate the member AB in the beam through δθ at the point A.

Find the vertical reaction (δyB) at point B as follows;

δθ=δyB1.8δyB=1.8δθ

Find the vertical displacement (δyC) at C with respect to vertical displacement (δyB) at B as follows;

δyB2.4=δyC1.5δyC=1.52.4δyB=58(1.8δθ)=1.125δθ

Find the vertical displacement (δyE) at E with respect to vertical displacement (δyB) at B as follows;

δyB2.4=δyE1.2δyE=1.22.4δyB=12(1.8δθ)=0.9δθ

Find the vertical displacement (δyF) at F with respect to vertical displacement (δyB) at B as follows;

δyE1.8=δyF1.5δyF=1.51.8δyE=56(0.9δθ)=0.75δθ

Use the concept of virtual work;

δU=0;MAδθ+800δyC600δyF=0

Substitute 1.125δθ for δyC and 0.75δθ for δyF.

MAδθ+800(1.125δθ)600(0.75δθ)=0MA+900450=0MA=450Nm(Anticlockwise)

Therefore, the couple representing the reaction at A is 450Nm(Counterclockwise)_.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
A rope having a weight per unit length of 0.4 lb/ft is wound 2 1/2 Times around a horizontal rod. Knowing that the coefficient of static friction between the rope and the rod is 0.30, determine the minimum length x of rope that should be left hanging if a 100-lb load is to be supported.
Problem no. 2 Two solid blocks resting on a frictionless plane are connected by a string as shown. Determine the maximum force P that can be applied to the 8 kg block if the maximum strength of the string is 10N.
6.107 a)The magnitude of the minimum force by surgeon's hands that will not allow the surgeon to move downward is _____lb. b) Assume the minimum force by the surgeon's hands is applied that will not allow the surgeon to move downward. The magnitude of the internal force in the straight section of the rope between the seat and the limb is _____lb. c) Assume an additional loop is placed around the limb. The magnitude of the minimum force by surgeon's hands that will not allow the surgeon to move downward is _____lb. d) Assume an additional loop is placed around the limb. Assume the minimum force by the surgeon's hands is applied that will not allow the surgeon to move downward. The magnitude of the internal force in the straight section of the rope between the seat and the limb is _____lb.

Chapter 10 Solutions

Vector Mechanics for Engineers: Statics

Ch. 10.1 - Prob. 10.11PCh. 10.1 - Knowing that the line of action of the force Q...Ch. 10.1 - Solve Prob. 10.12 assuming that the force P...Ch. 10.1 - The mechanism shown is acted upon by the force P....Ch. 10.1 - Prob. 10.15PCh. 10.1 - 10.15 and 10.16 Derive an expression for the...Ch. 10.1 - A uniform rod AB with length l and weight W is...Ch. 10.1 - The pin at C is attached to member BCD and can...Ch. 10.1 - For the linkage shown, determine the couple M...Ch. 10.1 - For the linkage shown, determine the force...Ch. 10.1 - A 4-kN force P is applied as shown to the piston...Ch. 10.1 - A couple M with a magnitude of 100 Nm isapplied as...Ch. 10.1 - Rod AB is attached to a block at A that can...Ch. 10.1 - Solve Prob. 10.23, assuming that the 800-N force...Ch. 10.1 - Prob. 10.25PCh. 10.1 - Determine the value of corresponding to...Ch. 10.1 - Prob. 10.27PCh. 10.1 - Determine the value of corresponding to...Ch. 10.1 - Prob. 10.29PCh. 10.1 - Two rods AC and CE are connected by a pin at Cand...Ch. 10.1 - Solve Prob. 10.30 assuming that force P is movedto...Ch. 10.1 - Two bars AD and DG are connected by a pin at Dand...Ch. 10.1 - Solve Prob. 10.32 assuming that the 900-N...Ch. 10.1 - Two 5-kg bars AB and BC are connected by a pin atB...Ch. 10.1 - A vertical force P with a magnitude of 150 N...Ch. 10.1 - Prob. 10.36PCh. 10.1 - 10.37 and 10.38 Knowing that the constant of...Ch. 10.1 - Prob. 10.38PCh. 10.1 - The lever AB is attached to the horizontal shaft...Ch. 10.1 - Solve Prob. 10.39, assuming that P = 350 N, l =250...Ch. 10.1 - Prob. 10.41PCh. 10.1 - The position of boom ABC is controlled by...Ch. 10.1 - The position of member ABC is controlled by the...Ch. 10.1 - The position of member ABC is controlled by...Ch. 10.1 - The telescoping arm ABC is used to provide...Ch. 10.1 - Solve Prob. 10.45, assuming that the workers...Ch. 10.1 - Denoting the coefficient of static friction...Ch. 10.1 - Knowing that the coefficient of static...Ch. 10.1 - A block with weight W is pulled up a plane forming...Ch. 10.1 - Derive an expression for the mechanical...Ch. 10.1 - Denoting the coefficient of static friction...Ch. 10.1 - Knowing that the coefficient of static...Ch. 10.1 - Using the method of virtual work,...Ch. 10.1 - Using the method of virtual work, determine...Ch. 10.1 - Referring to Prob. 10.43 and using the value...Ch. 10.1 - Prob. 10.56PCh. 10.1 - Prob. 10.57PCh. 10.1 - Prob. 10.58PCh. 10.2 - Using the method of Sec. 10.2C, solve Prob. 10.29....Ch. 10.2 - Using the method of Sec. 10.2C, solve Prob. 10.30....Ch. 10.2 - Using the method of Sec. 10.2C, solve Prob. 10.31....Ch. 10.2 - Using the method of Sec. 10.2C, solve Prob. 10.32....Ch. 10.2 - Using the method of Sec. 10.2C, solve Prob. 10.34....Ch. 10.2 - Prob. 10.64PCh. 10.2 - Using the method of Sec. 10.2C, solve Prob. 10.37....Ch. 10.2 - Prob. 10.66PCh. 10.2 - Prob. 10.67PCh. 10.2 - Show that equilibrium is neutral in Prob. 10.7....Ch. 10.2 - Two uniform rods, each with a mass m, areattached...Ch. 10.2 - Two uniform rods, AB and CD, are attached to gears...Ch. 10.2 - Two uniform rods AB and CD, of the same length...Ch. 10.2 - Two uniform rods, each of mass m and length l, are...Ch. 10.2 - Using the method of Sec. 10.2C, solve Prob....Ch. 10.2 - In Prob. 10.40, determine whether each of...Ch. 10.2 - A load W of magnitude 144 lb is applied to...Ch. 10.2 - Prob. 10.76PCh. 10.2 - Prob. 10.77PCh. 10.2 - Prob. 10.78PCh. 10.2 - A slender rod AB with a weight W is attached to...Ch. 10.2 - A slender rod AB with a weight W is attached totwo...Ch. 10.2 - Prob. 10.81PCh. 10.2 - A spring AB of constant k is attached to two...Ch. 10.2 - A slender rod AB is attached to two collars A and...Ch. 10.2 - Prob. 10.84PCh. 10.2 - 10.85 and 10.86 Cart B, which weighs 75 kN, rolls...Ch. 10.2 - 10.85 and 10.86 Cart B, which weighs 75 kN, rolls...Ch. 10.2 - 10.87 and 10.88 Collar A can slide freely on the...Ch. 10.2 - 10.87 and 10.88 Collar A can slide freely on the...Ch. 10.2 - Prob. 10.89PCh. 10.2 - A vertical bar AD is attached to two springs...Ch. 10.2 - Rod AB is attached to a hinge at A and to two...Ch. 10.2 - Rod AB is attached to a hinge at A and to...Ch. 10.2 - Two bars are attached to a single spring of...Ch. 10.2 - Prob. 10.94PCh. 10.2 - The horizontal bar BEH is connected to three...Ch. 10.2 - The horizontal bar BEH is connected to three...Ch. 10.2 - Bars AB and BC, each with a length l and of...Ch. 10.2 - Prob. 10.98PCh. 10.2 - Prob. 10.99PCh. 10.2 - Prob. 10.100PCh. 10 - Determine the vertical force P that must be...Ch. 10 - Determine the couple M that must be applied...Ch. 10 - Determine the force P required to maintain...Ch. 10 - Derive an expression for the magnitude of the...Ch. 10 - Derive an expression for the magnitude of the...Ch. 10 - A vertical load W is applied to the linkage at B....Ch. 10 - A force P with a magnitude of 240 N is applied to...Ch. 10 - Two identical rods ABC and DBE are connected bya...Ch. 10 - Solve Prob. 10.108 assuming that the 24-lb load...Ch. 10 - Two uniform rods each with a mass m and length...Ch. 10 - A homogeneous hemisphere with a radius r isplaced...Ch. 10 - A homogeneous hemisphere with a radius r isplaced...
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Fluid Mechanics - Viscosity and Shear Strain Rate in 9 Minutes!; Author: Less Boring Lectures;https://www.youtube.com/watch?v=_0aaRDAdPTY;License: Standard youtube license