BuyFindarrow_forward

Discrete Mathematics With Applicat...

5th Edition
EPP + 1 other
ISBN: 9781337694193

Solutions

Chapter
Section
BuyFindarrow_forward

Discrete Mathematics With Applicat...

5th Edition
EPP + 1 other
ISBN: 9781337694193
Textbook Problem
1 views

  1. Let G be a graph with n vertices, and let v and w be distinct vertices of G. Prove that if there is a walk from v to w; then there is a walk from v to w that has length less than or equal to n-1.
  2. If A=(aij) and B=(bij) are any m × n matrix whose ijth entry is aij+bijfor each I = 1,2, …., m and j=1,2,….,n. Let G be a graph with n vertices where n>1, and let A be the adjacency matrix of G. Prove that G is connected if, and only if, every entry of A+A2+…+An-1.

To determine

(a)

Prove that if there is a walk from v to w, then there is a walk from v to w that has length less than or equal to n − 1.

Explanation

Given information:

Let G be a graph with n vertices, and let v and w be distinct vertices of G.

Proof:

The adjacency matrix A=[aij] is n×n zero-one matrix withaij={ 1     if there is an edge from  v i  to  v j 0                                      otherwise

A graph s connected if there exists a path between every pair of vertices.

G is a graph with n vertices

v and w are distinct vertices of G.

To proof: If there is a walk from v to w, then there is a walk from v to w that has length less than or equal to n − 1.

PROOF:

Let us assume that there exists a walk W from v to w and let the length of this walk be m.

If mn1, then W is a walk of length less than or equal to n − 1 and thus then the proof would be complete

To determine

(b)

Prove that G is connected if, and only if, every entry of A+A2+...+An1 is positive.

Still sussing out bartleby?

Check out a sample textbook solution.

See a sample solution

The Solution to Your Study Problems

Bartleby provides explanations to thousands of textbook problems written by our experts, many with advanced degrees!

Get Started

Chapter 10 Solutions

Show all chapter solutions add
Sect-10.1 P-2ESSect-10.1 P-3ESSect-10.1 P-4ESSect-10.1 P-5ESSect-10.1 P-6ESSect-10.1 P-7ESSect-10.1 P-8ESSect-10.1 P-9ESSect-10.1 P-10ESSect-10.1 P-11ESSect-10.1 P-12ESSect-10.1 P-13ESSect-10.1 P-14ESSect-10.1 P-15ESSect-10.1 P-16ESSect-10.1 P-17ESSect-10.1 P-18ESSect-10.1 P-19ESSect-10.1 P-20ESSect-10.1 P-21ESSect-10.1 P-22ESSect-10.1 P-23ESSect-10.1 P-24ESSect-10.1 P-25ESSect-10.1 P-26ESSect-10.1 P-27ESSect-10.1 P-28ESSect-10.1 P-29ESSect-10.1 P-30ESSect-10.1 P-31ESSect-10.1 P-32ESSect-10.1 P-33ESSect-10.1 P-34ESSect-10.1 P-35ESSect-10.1 P-36ESSect-10.1 P-37ESSect-10.1 P-38ESSect-10.1 P-39ESSect-10.1 P-40ESSect-10.1 P-41ESSect-10.1 P-42ESSect-10.1 P-43ESSect-10.1 P-44ESSect-10.1 P-45ESSect-10.1 P-46ESSect-10.1 P-47ESSect-10.1 P-48ESSect-10.1 P-49ESSect-10.1 P-50ESSect-10.1 P-51ESSect-10.1 P-52ESSect-10.1 P-53ESSect-10.1 P-54ESSect-10.1 P-55ESSect-10.1 P-56ESSect-10.1 P-57ESSect-10.2 P-1TYSect-10.2 P-2TYSect-10.2 P-3TYSect-10.2 P-4TYSect-10.2 P-5TYSect-10.2 P-6TYSect-10.2 P-1ESSect-10.2 P-2ESSect-10.2 P-3ESSect-10.2 P-4ESSect-10.2 P-5ESSect-10.2 P-6ESSect-10.2 P-7ESSect-10.2 P-8ESSect-10.2 P-9ESSect-10.2 P-10ESSect-10.2 P-11ESSect-10.2 P-12ESSect-10.2 P-13ESSect-10.2 P-14ESSect-10.2 P-15ESSect-10.2 P-16ESSect-10.2 P-17ESSect-10.2 P-18ESSect-10.2 P-19ESSect-10.2 P-20ESSect-10.2 P-21ESSect-10.2 P-22ESSect-10.2 P-23ESSect-10.3 P-1TYSect-10.3 P-2TYSect-10.3 P-3TYSect-10.3 P-1ESSect-10.3 P-2ESSect-10.3 P-3ESSect-10.3 P-4ESSect-10.3 P-5ESSect-10.3 P-6ESSect-10.3 P-7ESSect-10.3 P-8ESSect-10.3 P-9ESSect-10.3 P-10ESSect-10.3 P-11ESSect-10.3 P-12ESSect-10.3 P-13ESSect-10.3 P-14ESSect-10.3 P-15ESSect-10.3 P-16ESSect-10.3 P-17ESSect-10.3 P-18ESSect-10.3 P-19ESSect-10.3 P-20ESSect-10.3 P-21ESSect-10.3 P-22ESSect-10.3 P-23ESSect-10.3 P-24ESSect-10.3 P-25ESSect-10.3 P-26ESSect-10.3 P-27ESSect-10.3 P-28ESSect-10.3 P-29ESSect-10.3 P-30ESSect-10.4 P-1TYSect-10.4 P-2TYSect-10.4 P-3TYSect-10.4 P-4TYSect-10.4 P-5TYSect-10.4 P-6TYSect-10.4 P-7TYSect-10.4 P-1ESSect-10.4 P-2ESSect-10.4 P-3ESSect-10.4 P-4ESSect-10.4 P-5ESSect-10.4 P-6ESSect-10.4 P-7ESSect-10.4 P-8ESSect-10.4 P-9ESSect-10.4 P-10ESSect-10.4 P-11ESSect-10.4 P-12ESSect-10.4 P-13ESSect-10.4 P-14ESSect-10.4 P-15ESSect-10.4 P-16ESSect-10.4 P-17ESSect-10.4 P-18ESSect-10.4 P-19ESSect-10.4 P-20ESSect-10.4 P-21ESSect-10.4 P-22ESSect-10.4 P-23ESSect-10.4 P-24ESSect-10.4 P-25ESSect-10.4 P-26ESSect-10.4 P-27ESSect-10.4 P-28ESSect-10.4 P-29ESSect-10.4 P-30ESSect-10.4 P-31ESSect-10.5 P-1TYSect-10.5 P-2TYSect-10.5 P-3TYSect-10.5 P-4TYSect-10.5 P-5TYSect-10.5 P-1ESSect-10.5 P-2ESSect-10.5 P-3ESSect-10.5 P-4ESSect-10.5 P-5ESSect-10.5 P-6ESSect-10.5 P-7ESSect-10.5 P-8ESSect-10.5 P-9ESSect-10.5 P-10ESSect-10.5 P-11ESSect-10.5 P-12ESSect-10.5 P-13ESSect-10.5 P-14ESSect-10.5 P-15ESSect-10.5 P-16ESSect-10.5 P-17ESSect-10.5 P-18ESSect-10.5 P-19ESSect-10.5 P-20ESSect-10.5 P-21ESSect-10.5 P-22ESSect-10.5 P-23ESSect-10.5 P-24ESSect-10.5 P-25ESSect-10.6 P-1TYSect-10.6 P-2TYSect-10.6 P-3TYSect-10.6 P-4TYSect-10.6 P-5TYSect-10.6 P-6TYSect-10.6 P-7TYSect-10.6 P-1ESSect-10.6 P-2ESSect-10.6 P-3ESSect-10.6 P-4ESSect-10.6 P-5ESSect-10.6 P-6ESSect-10.6 P-7ESSect-10.6 P-8ESSect-10.6 P-9ESSect-10.6 P-10ESSect-10.6 P-11ESSect-10.6 P-12ESSect-10.6 P-13ESSect-10.6 P-14ESSect-10.6 P-15ESSect-10.6 P-16ESSect-10.6 P-17ESSect-10.6 P-18ESSect-10.6 P-19ESSect-10.6 P-20ESSect-10.6 P-21ESSect-10.6 P-22ESSect-10.6 P-23ESSect-10.6 P-24ESSect-10.6 P-25ESSect-10.6 P-26ESSect-10.6 P-27ESSect-10.6 P-28ESSect-10.6 P-29ESSect-10.6 P-30ESSect-10.6 P-31ES