BuyFindarrow_forward

Mathematical Applications for the ...

11th Edition
Ronald J. Harshbarger + 1 other
ISBN: 9781305108042

Solutions

Chapter
Section
BuyFindarrow_forward

Mathematical Applications for the ...

11th Edition
Ronald J. Harshbarger + 1 other
ISBN: 9781305108042
Textbook Problem

If the total cost function for a product is C ( x )   =   250   + 6 x +   0.   1 x 2 dollars, producing how many units, x, will minimize the average cost? Find the minimum average cost.

To determine

To calculate: The minimum average cost and number of units that is x for the cost function C(x)=250+6x+0.1x2

Explanation

Given Information:

The provided cost function is:

C(x)=250+6x+0.1x2

Formula used:

If f(x) and g(x) are two differentiable functions then by the property of derivative:

ddx(f(x)+g(x))=ddxf(x)+ddxg(x)

And

ddxxn=nxn1

Where n is a constant and x is the variable.

And the average cost is defined as:

C¯(x)=C(x)x

Where C(x) is the cost function.

Calculation:

Consider the cost function C(x)=250+6x+0.1x2.

Average cost is given as:

C¯(x)=C(x)x=250+6x+0.1x2x=250x+6+0.1x

The absolute maxima and absolute minima will occur only at the critical points. To calculate the critical points of the average cost function find the first derivative of the function:

C¯(x)=0.1x+6+250xddx(C¯)=ddx(0.1x+6+250x)

Use ddx(f(x)+g(x))=ddxf(x)+ddxg(x),

R¯(x)=ddx(0

Still sussing out bartleby?

Check out a sample textbook solution.

See a sample solution

The Solution to Your Study Problems

Bartleby provides explanations to thousands of textbook problems written by our experts, many with advanced degrees!

Get Started

Chapter 10 Solutions

Show all chapter solutions add
Sect-10.1 P-7ESect-10.1 P-8ESect-10.1 P-9ESect-10.1 P-10ESect-10.1 P-11ESect-10.1 P-12ESect-10.1 P-13ESect-10.1 P-14ESect-10.1 P-15ESect-10.1 P-16ESect-10.1 P-17ESect-10.1 P-18ESect-10.1 P-19ESect-10.1 P-20ESect-10.1 P-21ESect-10.1 P-22ESect-10.1 P-23ESect-10.1 P-24ESect-10.1 P-25ESect-10.1 P-26ESect-10.1 P-27ESect-10.1 P-28ESect-10.1 P-29ESect-10.1 P-30ESect-10.1 P-31ESect-10.1 P-32ESect-10.1 P-33ESect-10.1 P-34ESect-10.1 P-35ESect-10.1 P-36ESect-10.1 P-37ESect-10.1 P-38ESect-10.1 P-39ESect-10.1 P-40ESect-10.1 P-41ESect-10.1 P-42ESect-10.1 P-43ESect-10.1 P-44ESect-10.1 P-45ESect-10.1 P-46ESect-10.1 P-47ESect-10.1 P-48ESect-10.1 P-49ESect-10.1 P-50ESect-10.1 P-51ESect-10.1 P-52ESect-10.1 P-53ESect-10.1 P-54ESect-10.1 P-55ESect-10.1 P-56ESect-10.1 P-57ESect-10.1 P-58ESect-10.1 P-59ESect-10.1 P-60ESect-10.1 P-61ESect-10.1 P-62ESect-10.1 P-63ESect-10.1 P-64ESect-10.1 P-65ESect-10.2 P-1CPSect-10.2 P-2CPSect-10.2 P-3CPSect-10.2 P-4CPSect-10.2 P-1ESect-10.2 P-2ESect-10.2 P-3ESect-10.2 P-4ESect-10.2 P-5ESect-10.2 P-6ESect-10.2 P-7ESect-10.2 P-8ESect-10.2 P-9ESect-10.2 P-10ESect-10.2 P-11ESect-10.2 P-12ESect-10.2 P-13ESect-10.2 P-14ESect-10.2 P-15ESect-10.2 P-16ESect-10.2 P-17ESect-10.2 P-18ESect-10.2 P-19ESect-10.2 P-20ESect-10.2 P-21ESect-10.2 P-22ESect-10.2 P-23ESect-10.2 P-24ESect-10.2 P-25ESect-10.2 P-26ESect-10.2 P-27ESect-10.2 P-28ESect-10.2 P-29ESect-10.2 P-30ESect-10.2 P-31ESect-10.2 P-32ESect-10.2 P-33ESect-10.2 P-34ESect-10.2 P-35ESect-10.2 P-36ESect-10.2 P-37ESect-10.2 P-38ESect-10.2 P-39ESect-10.3 P-1CPSect-10.3 P-2CPSect-10.3 P-3CPSect-10.3 P-4CPSect-10.3 P-1ESect-10.3 P-2ESect-10.3 P-3ESect-10.3 P-5ESect-10.3 P-6ESect-10.3 P-7ESect-10.3 P-8ESect-10.3 P-9ESect-10.3 P-10ESect-10.3 P-11ESect-10.3 P-12ESect-10.3 P-13ESect-10.3 P-14ESect-10.3 P-15ESect-10.3 P-16ESect-10.3 P-17ESect-10.3 P-18ESect-10.3 P-19ESect-10.3 P-20ESect-10.3 P-21ESect-10.3 P-22ESect-10.3 P-23ESect-10.3 P-24ESect-10.3 P-25ESect-10.3 P-26ESect-10.3 P-27ESect-10.3 P-28ESect-10.3 P-29ESect-10.3 P-30ESect-10.3 P-33ESect-10.3 P-34ESect-10.3 P-35ESect-10.3 P-36ESect-10.3 P-37ESect-10.3 P-38ESect-10.3 P-39ESect-10.3 P-40ESect-10.3 P-41ESect-10.3 P-42ESect-10.3 P-43ESect-10.3 P-47ESect-10.3 P-48ESect-10.3 P-49ESect-10.4 P-1CPSect-10.4 P-2CPSect-10.4 P-3CPSect-10.4 P-1ESect-10.4 P-2ESect-10.4 P-3ESect-10.4 P-4ESect-10.4 P-5ESect-10.4 P-6ESect-10.4 P-7ESect-10.4 P-8ESect-10.4 P-9ESect-10.4 P-10ESect-10.4 P-11ESect-10.4 P-12ESect-10.4 P-13ESect-10.4 P-14ESect-10.4 P-15ESect-10.4 P-16ESect-10.4 P-17ESect-10.4 P-18ESect-10.4 P-19ESect-10.4 P-20ESect-10.4 P-21ESect-10.4 P-22ESect-10.4 P-23ESect-10.4 P-24ESect-10.4 P-25ESect-10.4 P-26ESect-10.4 P-27ESect-10.4 P-28ESect-10.4 P-29ESect-10.4 P-30ESect-10.4 P-31ESect-10.4 P-32ESect-10.4 P-33ESect-10.5 P-1CPSect-10.5 P-2CPSect-10.5 P-1ESect-10.5 P-2ESect-10.5 P-3ESect-10.5 P-4ESect-10.5 P-5ESect-10.5 P-6ESect-10.5 P-7ESect-10.5 P-8ESect-10.5 P-9ESect-10.5 P-10ESect-10.5 P-11ESect-10.5 P-12ESect-10.5 P-13ESect-10.5 P-14ESect-10.5 P-15ESect-10.5 P-16ESect-10.5 P-17ESect-10.5 P-18ESect-10.5 P-19ESect-10.5 P-20ESect-10.5 P-21ESect-10.5 P-22ESect-10.5 P-23ESect-10.5 P-24ESect-10.5 P-25ESect-10.5 P-26ESect-10.5 P-27ESect-10.5 P-28ESect-10.5 P-29ESect-10.5 P-30ESect-10.5 P-31ESect-10.5 P-32ESect-10.5 P-33ESect-10.5 P-34ESect-10.5 P-35ESect-10.5 P-36ESect-10.5 P-37ESect-10.5 P-38ESect-10.5 P-39ESect-10.5 P-40ESect-10.5 P-41ESect-10.5 P-42ESect-10.5 P-43ECh-10 P-1RECh-10 P-2RECh-10 P-3RECh-10 P-4RECh-10 P-5RECh-10 P-6RECh-10 P-7RECh-10 P-8RECh-10 P-9RECh-10 P-10RECh-10 P-11RECh-10 P-12RECh-10 P-13RECh-10 P-14RECh-10 P-15RECh-10 P-16RECh-10 P-17RECh-10 P-18RECh-10 P-19RECh-10 P-20RECh-10 P-21RECh-10 P-22RECh-10 P-23RECh-10 P-24RECh-10 P-25RECh-10 P-26RECh-10 P-27RECh-10 P-28RECh-10 P-29RECh-10 P-30RECh-10 P-31RECh-10 P-32RECh-10 P-33RECh-10 P-34RECh-10 P-35RECh-10 P-36RECh-10 P-37RECh-10 P-38RECh-10 P-39RECh-10 P-40RECh-10 P-41RECh-10 P-42RECh-10 P-43RECh-10 P-44RECh-10 P-45RECh-10 P-46RECh-10 P-47RECh-10 P-48RECh-10 P-49RECh-10 P-50RECh-10 P-51RECh-10 P-52RECh-10 P-53RECh-10 P-54RECh-10 P-55RECh-10 P-1TCh-10 P-2TCh-10 P-3TCh-10 P-4TCh-10 P-5TCh-10 P-6TCh-10 P-7TCh-10 P-8TCh-10 P-9TCh-10 P-10TCh-10 P-11TCh-10 P-12TCh-10 P-13TCh-10 P-14TCh-10 P-15TCh-10 P-16TCh-10 P-17T

Additional Math Solutions

Find more solutions based on key concepts

Show solutions add

Solve the equations in Exercises 112 for x (mentally, if possible). ax+b=c(a0)

Finite Mathematics and Applied Calculus (MindTap Course List)

Finding Derivatives In Exercises 51-62, find f(x). f(x)=2x23x+1x

Calculus: An Applied Approach (MindTap Course List)

In Exercises 107-120, factor each expression completely. 120. x3 27

Applied Calculus for the Managerial, Life, and Social Sciences: A Brief Approach

Solve for y in terms of x: x2y=6

Elementary Technical Mathematics

Test the series for convergence or divergence. 29. n=1(1)ncoshn

Single Variable Calculus: Early Transcendentals

f(x)=x+2x(x5) is continuous for all x except: a) x = 2 b) x = 2, 0, 5 c) x = 0, 5 d) f is continuous for all x.

Study Guide for Stewart's Single Variable Calculus: Early Transcendentals, 8th

Explain the difference between a statistic and a parameter.

Research Methods for the Behavioral Sciences (MindTap Course List)

Self Check Graph: 3x2y=6.

College Algebra (MindTap Course List)