Tutorials in Introductory Physics
Tutorials in Introductory Physics
1st Edition
ISBN: 9780130970695
Author: Peter S. Shaffer, Lillian C. McDermott
Publisher: Addison Wesley
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Chapter 10.3, Problem 1aT

A pin is placed In front of a cylindrical mirror as shown in the top view diagram at right. Lines A-E represent some of the light rays from the pin that reach the mirror. Points M and N represent the locations of two observers.

Chapter 10.3, Problem 1aT, A pin is placed In front of a cylindrical mirror as shown in the top view diagram at right. Lines

You have been provided with enlargement of this top view diagram.

1. Use a ruler and a protractor to draw the reflected rays on the enlargement. (Hint: The center of the cylindrical mirror is marked on the diagram.)

Describe how you determined the direction of each reflected ray.

2. For each of the reflected rays, use a dashed line to show the direction from which the reflected ray appears to have come.

Do all of the reflected rays appear to have come from the same point?

3. On the diagram. draw a ray. A between rays A and B. Draw the corresponding reflected ray.

Which more nearly appear to pass through the same point: the reflected rays A, A’, and B or the reflected rays A, B, and C?

Determine and label the approximate location at which an observer at N would see an image of the pin.

Would the observers at M and N agree on the location of the image of the pin? Explain how you can tell from your ray diagram.

Would the observers at M and N agree on the location of the image of the pin? Explain how you can tell from your ray diagram.

4. Ask a tutorial instructor for a semi-cylindrical mirror. Place the mirror on the enlargement and use the method of parallax to check your predictions. (You may find it helpful to tape the mirror onto the diagram.) If there are any inconsistencies between your predictions and your observations, resolve the inconsistencies.

Blurred answer
Students have asked these similar questions
If the radius of curvature of the mirror in diagram A is 15 cm and the object which is 10 cm long is placed 20 cm away from the mirror, then the location of the image is 12 cm and the size of the image is 6 cm. 1. What is the location of the image? (between F and C, at C etc.) 2. What is the orientation of the image? (inverted or upright) 3. What is the size of the image? (reduced, same, bigger) 4. What is the type of the image? (real or virtual)
The ray diagrams shown trace the path that light takes in order to locate the image formed by a concave mirror. Points C and f indicate the mirror's center center of curvature and focal point. Which ray diagrams are drawn incorrectly.
Consider the compound optical system shown in the diagram, where two thin lenses of focal lengths 7.5 cm (left lens) and 35 cm (right lens) are separated by a distance 25 cm.     If a 2.9 cm tall object is placed as indicated in part (a), and the image formed is 0.74 cm tall, what is the magnification of the first lens?  M1 =  b. Using the information from part (a), calculate the image distance, in centimeters, from the first lens.  di1 =

Chapter 10 Solutions

Tutorials in Introductory Physics

Ch. 10.1 - Prob. 2cTCh. 10.1 - Predict what you would see on the screen at the...Ch. 10.1 - Suppose that the light from the top bulb in the...Ch. 10.1 - Predict what you would see on the screen in the...Ch. 10.2 - Close one eye and lean down so that your open eye...Ch. 10.2 - Suppose that you placed your finger behind the...Ch. 10.2 - Prob. 1cTCh. 10.2 - Prob. 1dTCh. 10.2 - Place your head so that you can see the image of...Ch. 10.2 - Move the nail off w the right side of the mirror...Ch. 10.2 - Prob. 3aTCh. 10.2 - Turn the large sheet of paper over (or obtain a...Ch. 10.2 - Remove the mirror and the object nail. For each...Ch. 10.2 - On the diagram at right, draw one ray from the pin...Ch. 10.2 - Prob. 4bTCh. 10.2 - Determine the image location using the method of...Ch. 10.3 - A pin is placed In front of a cylindrical mirror...Ch. 10.3 - Could you use any two rays (even those that do not...Ch. 10.3 - Observers at M and N arc looking at an image of...Ch. 10.3 - Stick a pin into a piece of cardboard and place...Ch. 10.3 - Gradually decrease the angle between the mirrors...Ch. 10.4 - Prob. 1bTCh. 10.4 - Three students are discussing their results from...Ch. 10.4 - For each case shown below, determine and label the...Ch. 10.4 - In each of the previous cases, predict what would...Ch. 10.4 - Prob. 2cTCh. 10.4 - Explain how you can use a screen to determine the...Ch. 10.5 - Look at very distant object through a convex lens....Ch. 10.5 - Consider a point on the distant object that is...Ch. 10.5 - Suppose that you placed a very small bulb at the...Ch. 10.5 - Consider the ray chai is parallel to the principal...Ch. 10.5 - Consider the ray that goes through the focal point...Ch. 10.5 - How can you use these two rays to determine the...Ch. 10.5 - Consider the ray from the easer that strikes the...Ch. 10.5 - Draw the continuation of the two remaining rays...Ch. 10.5 - Prob. 2fTCh. 10.5 - The diagram below shows a small object placed near...Ch. 10.5 - A lens, a bulb, and a screen are arranged as shown...Ch. 10.5 - Obtain the necessary equipment and check your...Ch. 10.5 - Prob. 3cTCh. 10.6 - The diagram at right illustrates what an observer...Ch. 10.6 - Obtain two soda cans and a cardboard tube that has...Ch. 10.6 - Could an observer at each of the labeled points...Ch. 10.6 - Use the above diagram to answer the following...Ch. 10.6 - Obtain convex lens. Use the lens as a magnifying...Ch. 10.6 - Draw a ray diagram that shows how to determine the...Ch. 10.6 - The lateral magnification, m1 , is defined as...Ch. 10.6 - The angular magnification, m , is defined as m= ,...
Knowledge Booster
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • for part 2 the options are Where will the image of this lens form closest to? (A or B or C or D or E or F or G or H) The image formed by this lens is a (real or virtual) (inverted or upright)
    Thank you so much in advance. The diagram shows a lens with a positive focal length 11 cm. (a) If we place an object at a distance of 25 cm from the lens, where will the resulting image position on the other side of the lens be found? Include units in answer, (b) With the object at 25 cm from the lens, what will the magnification be for the image at this position? (c) If we place an object at a distance of 4 cm from the lens, where will the resulting image position be found? (d) With the object at 4 cm from the lens, what will the magnification be for the image at this position?
    A concave lens refracts parallel rays in such a way that they are bent away from the axis of the lens. For this reason, a concave lens is referred to as a diverging lens. Part A: Consider the following diagrams, where F represents the focal point of a concave lens. In these diagrams, the image formed by the lens is obtained using the ray tracing technique. Which diagrams are accurate?(Figure 1) *Type A if you think that only diagram A is correct, type AB if you think that only diagrams A and B are correct, and so on. Part B: If the focal length of the concave lens is -7.50 cm , at what distance d_o from the lens should an object be placed so that its image is formed 3.70 cm from the lens?
    • SEE MORE QUESTIONS
    Recommended textbooks for you
  • Glencoe Physics: Principles and Problems, Student...
    Physics
    ISBN:9780078807213
    Author:Paul W. Zitzewitz
    Publisher:Glencoe/McGraw-Hill
  • Glencoe Physics: Principles and Problems, Student...
    Physics
    ISBN:9780078807213
    Author:Paul W. Zitzewitz
    Publisher:Glencoe/McGraw-Hill
    AP Physics 2 - Geometric Optics: Mirrors and Lenses - Intro Lesson; Author: N. German;https://www.youtube.com/watch?v=unT297HdZC0;License: Standard YouTube License, CC-BY