BuyFind*arrow_forward*

5th Edition

EPP + 1 other

Publisher: Cengage Learning,

ISBN: 9781337694193

Chapter 10.4, Problem 14ES

Textbook Problem

In each of 8—21, either draw a graph with the given specifications or explain why no such graph exists.

14. Graph, two vertices, one edge, not a tree

Discrete Mathematics With Applications

Show all chapter solutions

Ch. 10.1 - Let G be a graph and let v and w be vertices in G....Ch. 10.1 - A graph is connected if, any only if, _____.Ch. 10.1 - Removing an edge from a circuit in a graph does...Ch. 10.1 - An Euler circuit in graph is _____.Ch. 10.1 - A graph has a Euler circuit if, and only if,...Ch. 10.1 - Given vertices v and w in a graph, there is an...Ch. 10.1 - A Hamiltonian circuit in a graph is ______.Ch. 10.1 - If a graph G has a Hamiltonian circuit, then G has...Ch. 10.1 - A travelling salesman problem involves finding a...Ch. 10.1 - In the graph below, determine whether the...

Ch. 10.1 - In the graph below, determine whether the...Ch. 10.1 - Let G be the graph and consider the walk...Ch. 10.1 - Consider the following graph. How many paths are...Ch. 10.1 - Consider the following graph. How many paths are...Ch. 10.1 - An edge whose removal disconnects the graph of...Ch. 10.1 - Given any positive integer n, (a) find a connected...Ch. 10.1 - Find the number of connected components for each...Ch. 10.1 - Each of (a)—(c) describes a graph. In each case...Ch. 10.1 - The solution for Example 10.1.6 shows a graph for...Ch. 10.1 - Is it possible for a citizen of Königsberg to make...Ch. 10.1 - Determine which of the graph in 12-17 have Euler...Ch. 10.1 - Determine which of the graph in 12-17 have Euler...Ch. 10.1 - Determine which of the graph in 12-17 have Euler...Ch. 10.1 - Determine which of the graph in 12-17 have Euler...Ch. 10.1 - Determine which of the graph in 12-17 have Euler...Ch. 10.1 - Determine which of the graph in 12-17 have Euler...Ch. 10.1 - Is it possible to take a walk around the city...Ch. 10.1 - For each of the graph in 19-21, determine whether...Ch. 10.1 - For each of the graph in 19-21, determine whether...Ch. 10.1 - For each of the graph in 19-21, determine whether...Ch. 10.1 - The following is a floor plan of a house. Is it...Ch. 10.1 - Find all subgraph of each of the following graphs.Ch. 10.1 - Find the complement of each of the following...Ch. 10.1 - Find the complement of the graph K4, the complete...Ch. 10.1 - Suppose that in a group of five people A,B,C,D,...Ch. 10.1 - Let G be a simple graph with n vertices. What is...Ch. 10.1 - Show that at a party with at least two people,...Ch. 10.1 - Find Hamiltonian circuits for each of the graph in...Ch. 10.1 - Find Hamiltonian circuits for each of the graph in...Ch. 10.1 - Show that none of graphs in 31-33 has a...Ch. 10.1 - Show that none of graphs in 31-33 has a...Ch. 10.1 - Show that none of graphs in 31-33 has a...Ch. 10.1 - In 34-37, find Hamiltonian circuits for those...Ch. 10.1 - In 34-37, find Hamiltonian circuits for those...Ch. 10.1 - In 34-37, find Hamiltonian circuits for those...Ch. 10.1 - In 34-37, find Hamiltonian circuits for those...Ch. 10.1 - Give two examples of graphs that have Euler...Ch. 10.1 - Give two examples of graphs that have Hamiltonian...Ch. 10.1 - Give two examples of graphs that have circuits...Ch. 10.1 - Give two examples of graphs that have Euler...Ch. 10.1 - A traveler in Europe wants to visit each of the...Ch. 10.1 - a. Prove that if a walk in a graph contains a...Ch. 10.1 - Prove Lemma 10.1.1(a): If G is a connected graph,...Ch. 10.1 - Prove Lemma 10.1.1(b): If vertices v and w are...Ch. 10.1 - Draw a picture to illustrate Lemma 10.1.1(c): If a...Ch. 10.1 - Prove that if there is a trail in a graph G from a...Ch. 10.1 - If a graph contains a circuits that starts and...Ch. 10.1 - Prove that if there is a circuit in a graph that...Ch. 10.1 - Let G be a connected graph, and let C be any...Ch. 10.1 - Prove that any graph with an Euler circuit is...Ch. 10.1 - Prove Corollary 10.1.5.Ch. 10.1 - For what values of n dies the complete graph Kn...Ch. 10.1 - For what values of m and n does the complete...Ch. 10.1 - What is the maximum number of edges a simple...Ch. 10.1 - Prove that if G is any bipartite graph, then every...Ch. 10.1 - An alternative proof for Theorem 10.1.3 has the...Ch. 10.2 - In the adjacency matrix for a directed graph, the...Ch. 10.2 - In the adjacency matrix for an undirected graph,...Ch. 10.2 - An n × n square matrix is called symmetric if, and...Ch. 10.2 - The ijth entry in the produce of two matrices A...Ch. 10.2 - In an n × n identity matrix, the entries on the...Ch. 10.2 - If G is a graph with vertices v1, v2, …., vn and A...Ch. 10.2 - Find real numbers a, b, and c such that the...Ch. 10.2 - Find the adjacency matrices for the following...Ch. 10.2 - Find directed graphs that have the following...Ch. 10.2 - Find adjacency matrices for the following...Ch. 10.2 - Find graphs that have the following adjacency...Ch. 10.2 - The following are adjacency matrices for graphs....Ch. 10.2 - Suppose that for every positive integer I, all the...Ch. 10.2 - Find each of the following products. [21][13]...Ch. 10.2 - Find each of the following products? a....Ch. 10.2 - Let A = [ 1 1 1 0 2 1] , B = [ 2 0 1 3] and C =...Ch. 10.2 - Give an example different from that in the text to...Ch. 10.2 - Let O denote the matrix [0000] . Find 2 × 2...Ch. 10.2 - Let O denote the matrix [0000] . Find 2 × 2...Ch. 10.2 - In 14-18, assume the entries of all matrices are...Ch. 10.2 - In 14-18, assume the entries of all matrices are...Ch. 10.2 - In 14-18, assume the entries of all matrices are...Ch. 10.2 - In 14-18, assume the entries of all matrices are...Ch. 10.2 - In 14—18, assume the entries of all matrices are...Ch. 10.2 - Let A = [112101210] . Find A2 and A3. Let G be the...Ch. 10.2 - The following is an adjacency matrix for a graph:...Ch. 10.2 - Let A be the adjacency matrix for K3, the complete...Ch. 10.2 - Draw a graph that has [0001200011000211120021100]...Ch. 10.2 - Let G be a graph with n vertices, and let v and w...Ch. 10.3 - If G and G’ are graphs, then G is isomorphic to G’...Ch. 10.3 - A property P is an invariant for graph isomorphism...Ch. 10.3 - Some invariants for graph isomorphism are , , , ,...Ch. 10.3 - For each pair of graphs G and G’ in 1-5, determine...Ch. 10.3 - For each pair of graphs G and G’ in 1-5, determine...Ch. 10.3 - For each pair of graphs G and G’ in 1-5, determine...Ch. 10.3 - For each pair of graphs G and G’ in 1-5, determine...Ch. 10.3 - For each pair of graphs G and G in 1—5, determine...Ch. 10.3 - For each pair of graphs G and G’ in 6-13,...Ch. 10.3 - For each pair of graphs G and G’ in 6-13,...Ch. 10.3 - For each pair of graphs G and G’ in 6-13,...Ch. 10.3 - For each pair of graphs G and G’ in 6-13,...Ch. 10.3 - For each pair of graphs G and G’ in 6-13,...Ch. 10.3 - For each pair of graphs G and G’ in 6-13,...Ch. 10.3 - For each pair of simple graphs G and G in 6—13,...Ch. 10.3 - For each pair of graphs G and G’ in 6-13,...Ch. 10.3 - Draw all nonisomorphic simple graphs with three...Ch. 10.3 - Draw all nonisomorphic simple graphs with four...Ch. 10.3 - Draw all nonisomorphic graphs with three vertices...Ch. 10.3 - Draw all nonisomorphic graphs with four vertices...Ch. 10.3 - Draw all nonisomorphic graphs with four vertices...Ch. 10.3 - Draw all nonisomorphic graphs with six vertices,...Ch. 10.3 - Draw four nonisomorphic graphs with six vertices,...Ch. 10.3 - Prove that each of the properties in 21-29 is an...Ch. 10.3 - Prove that each of the properties in 21-29 is an...Ch. 10.3 - Prove that each of the properties in 21-29 is an...Ch. 10.3 - Prove that each of the properties in 21-29 is an...Ch. 10.3 - Prove that each of the properties in 21-29 is an...Ch. 10.3 - Prove that each of the properties in 21-29 is an...Ch. 10.3 - Prove that each of the properties in 21-29 is an...Ch. 10.3 - Prove that each of the properties in 21-29 is an...Ch. 10.3 - Prove that each of the properties in 21-29 is an...Ch. 10.3 - Show that the following two graphs are not...Ch. 10.4 - A circuit-free graph is a graph with __________.Ch. 10.4 - A forest is a graph that is _________, and a tree...Ch. 10.4 - A trivial tree is a graph that consists of...Ch. 10.4 - Any tree with at least two vertices has at least...Ch. 10.4 - If a tree T has at least two vertices, then a...Ch. 10.4 - For any positive integer n, any tree with n...Ch. 10.4 - For any positive integer n, if G is a connected...Ch. 10.4 - Read the tree in Example 10.4.2 from left to right...Ch. 10.4 - Draw trees to show the derivations of the...Ch. 10.4 - What is the total degree of a tree with n...Ch. 10.4 - Let G be the graph of a hydrocarbon molecule with...Ch. 10.4 - Extend the argument given in the proof of Lemma...Ch. 10.4 - If graphs are allowed to have an infinite number...Ch. 10.4 - Find all leaves (or terminal vertices) and all...Ch. 10.4 - In each of 8—21, either draw a graph with the...Ch. 10.4 - In each of 8—21, either draw a graph with the...Ch. 10.4 - In each of 8—21, either draw a graph with the...Ch. 10.4 - In each of 8—21, either draw a graph with the...Ch. 10.4 - In each of 8—21, either draw a graph with the...Ch. 10.4 - In each of 8—21, either draw a graph with the...Ch. 10.4 - In each of 8—21, either draw a graph with the...Ch. 10.4 - In each of 8—21, either draw a graph with the...Ch. 10.4 - In each of 8—21, either draw a graph with the...Ch. 10.4 - In each of 8—21, either draw a graph with the...Ch. 10.4 - In each of 8—21, either draw a graph with the...Ch. 10.4 - In each of 8—21, either draw a graph with the...Ch. 10.4 - In each of 8—21, either draw a graph with the...Ch. 10.4 - In each of 8—21, either draw a graph with the...Ch. 10.4 - A connected graph has twelve vertices and eleven...Ch. 10.4 - A connected graph has nine vertices and twelve...Ch. 10.4 - Suppose that v is a vertex of degree 1 in a...Ch. 10.4 - A graph has eight vertices and six edges. Is it...Ch. 10.4 - If a graph has n vertices and n2 or fewer can it...Ch. 10.4 - A circuit-free graph has ten vertices and nine...Ch. 10.4 - Is a circuit-free graph with n vertices and at...Ch. 10.4 - Prove that every nontrivial tree has at least two...Ch. 10.4 - Find all nonisomorphic trees with five vertices.Ch. 10.4 - a. Prove that the following is an invariant for...Ch. 10.5 - A rooted tree is a tree in which . The level of a...Ch. 10.5 - A binary tree is a rooted tree in which .Ch. 10.5 - A full binary tree is a rooted tree in which .Ch. 10.5 - If k is a positive integer and T is a full binary...Ch. 10.5 - If T is a binary tree that has t leaves and height...Ch. 10.5 - Consider the tree shown below with root a. a. What...Ch. 10.5 - Consider the tree shown below with root v0 . a....Ch. 10.5 - Draw binary trees to represent the following...Ch. 10.5 - In each of 4—20, either draw a graph with the...Ch. 10.5 - In each of 4—20, either draw a graph with the...Ch. 10.5 - In each of 4—20, either draw a graph with the...Ch. 10.5 - In each of 4—20, either draw a graph with the...Ch. 10.5 - In each of 4—20, either draw a graph with the...Ch. 10.5 - In each of 4—20, either draw a graph with the...Ch. 10.5 - In each of 4—20, either draw a graph with the...Ch. 10.5 - In each of 4—20, either draw a graph with the...Ch. 10.5 - In each of 4—20, either draw a graph with the...Ch. 10.5 - In each of 4—20, either draw a graph with the...Ch. 10.5 - In each of 4—20, either draw a graph with the...Ch. 10.5 - In each of 4—20, either draw a graph with the...Ch. 10.5 - In each of 4—20, either draw a graph with the...Ch. 10.5 - In each of 4—20, either draw a graph with the...Ch. 10.5 - In each of 4—20, either draw a graph with the...Ch. 10.5 - In each of 4—20, either draw a graph with the...Ch. 10.5 - In each of 4—20, either draw a graph with the...Ch. 10.5 - In 21-25, use the steps of Algorithm 10.5.1 to...Ch. 10.5 - In 21-25, use the steps of Algorithm 10.5.1 to...Ch. 10.5 - In 21-25, use the steps of Algorithm 10.5.1 to...Ch. 10.5 - In 21-25, use the steps of Algorithm 10.5.1 to...Ch. 10.5 - In 21-25, use the steps of Algorithm 10.5.1 to...Ch. 10.6 - A spanning tree for a graph G is .Ch. 10.6 - A weighted graph is a graph for which and the...Ch. 10.6 - A minimum spanning tree for a connected, weighted...Ch. 10.6 - In Kruskal’s algorithm, the edges of a connected,...Ch. 10.6 - In Prim’s algorithm, a minimum spanning tree is...Ch. 10.6 - In Dijkstra’s algorithm, a vertex is in the fringe...Ch. 10.6 - At each stage of Dijkstra’s algorithm, the vertex...Ch. 10.6 - Find all possible spanning trees for each of the...Ch. 10.6 - Find all possible spanning trees for each of the...Ch. 10.6 - Find a spanning trees for each of the graphs in 3...Ch. 10.6 - Find a spanning trees for each of the graphs in 3...Ch. 10.6 - Use Kruskal’s algorithm to find a minimum spanning...Ch. 10.6 - Use Kruskal’s algorithm to find a minimum spanning...Ch. 10.6 - Use Prim’s algorithm starting with vertex a or...Ch. 10.6 - Use Prim’s algorithm starting with vertex a or...Ch. 10.6 - For each of the graphs in 9 and 10, find all...Ch. 10.6 - For each of the graphs in 9 and 10, find all...Ch. 10.6 - A pipeline is to be built that will link six...Ch. 10.6 - Use Dijkstra’s algorithm for the airline route...Ch. 10.6 - Use Dijkstra’s algorithm to find the shortest path...Ch. 10.6 - Use Dijkstra’s algorithm to find the shortest path...Ch. 10.6 - Use Dijkstra’s algorithm to find the shortest path...Ch. 10.6 - Use Dijkstra’s algorithm to find the shortest path...Ch. 10.6 - Prove part (2) of Proposition 10.6.1: Any two...Ch. 10.6 - Given any two distinct vertices of a tree, there...Ch. 10.6 - Prove that if G is a graph with spanning tree T...Ch. 10.6 - Suppose G is a connected graph and T is a...Ch. 10.6 - a. Suppose T1 and T2 are two different spanning...Ch. 10.6 - Prove that an edge e is contained in every...Ch. 10.6 - Consider the spanning trees T1and T2in the proof...Ch. 10.6 - Suppose that T is a minimum spanning tree for a...Ch. 10.6 - Prove that if G is a connected, weighted graph and...Ch. 10.6 - If G is a connected, weighted graph and no two...Ch. 10.6 - Prove that if G is a connected, weighted graph and...Ch. 10.6 - Suppose a disconnected graph is input to Kruskal’s...Ch. 10.6 - Suppose a disconnected graph is input to Prim’s...Ch. 10.6 - Modify Algorithm 10.6.3 so that the output...Ch. 10.6 - Prove that if a connected, weighted graph G is...

Find more solutions based on key concepts

Show solutions Convert the expressions in Exercises 8596 radical form. 22/3

Finite Mathematics

Answer the following questions using complete sentences and your own words. HISTORY QUESTIONS Who developed a f...

Mathematics: A Practical Odyssey

Read the settings of these metric vernier micrometer scales graduated in 0.002 mm. In each case the arrow shows...

Mathematics For Machine Technology

Find the derivatives of the functions in Problems 1-32. Simplify and express the answer using positive exponent...

Mathematical Applications for the Management, Life, and Social Sciences

Find the ratio of the lengths of corresponding sides for the similar triangles.

Mathematical Excursions (MindTap Course List)

In Exercise 1-22, evaluate the given expression. C(n,n2)

Finite Mathematics for the Managerial, Life, and Social Sciences

Follow the rules for working with measurements. A cylindrical cooling tank has an outside diameter of 5.00 ft. ...

Elementary Technical Mathematics

Solve the equations in Exercises 126. (x2+1)5(x+3)4+(x2+1)6(x+3)3=0

Finite Mathematics and Applied Calculus (MindTap Course List)

The following data show the daily closing prices (in dollars per share) for a stock. Date Price () Nov. 3 82.87...

Statistics for Business & Economics, Revised (MindTap Course List)

State as much information as you can about the P-value for an upper-tailed F test in each of the following situ...

Introduction To Statistics And Data Analysis

SOC/CJ Statewide, the police clear by arrest 35 of the robberies and 42 of the aggravated assaults reported to ...

Essentials Of Statistics

15-16 Find the limit. limx[ln(2+x)ln(1+x)]

Calculus (MindTap Course List)

Acceleration Describe the motion of a particle when the normal component of acceleration is 0.

Calculus (MindTap Course List)

Express each of the numbers in Exercises 7-12 as a quotient of integers, reduce to lowest terms.

Elements Of Modern Algebra

Write an equation of each line. Write the answer in slope-intercept form. The line passes through (7,2) and is ...

College Algebra (MindTap Course List)

From the following information, determine the maturity date of each loan. Loan Date Time of Loan (days) Maturit...

Contemporary Mathematics for Business & Consumers

Plot the following data points. x 2 3 5 7 8 y -2 0 10 28 40

Functions and Change: A Modeling Approach to College Algebra (MindTap Course List)

Finding a Derivative Implicitly In Exercises 23-26, differentiate implicitly to find dy/dx. x2xy+y2x+y=0

Calculus: Early Transcendental Functions (MindTap Course List)

Finding the Mass of a LaminaIn Exercises 35 and 36, find the mass of the lamina described by the inequalities, ...

Multivariable Calculus

Use a calculator to find each of the following. Round all answers to four places past the decimal point. sec48....

Trigonometry (MindTap Course List)

Predicting Charity Expenses. Charity Navigator is Americas leading independent charity evaluator. The following...

Essentials Of Statistics For Business & Economics

Finding Slope and Concavity In Exercises 9-18, find dy/dx and d2y/dx2, and find the slope and concavity (if pos...

Calculus: Early Transcendental Functions

Research has demonstrated strong gender differences in teenagers approaches to dealing with mental health issue...

Essentials of Statistics for The Behavioral Sciences (MindTap Course List)

Psychology journals and medical journals tend to use different formats for citations. Locate a report in a medi...

Research Methods for the Behavioral Sciences (MindTap Course List)

Find the absolute maximum and absolute minimum values of f on the given interval. f(x)=x+1x,[0.2,4]

Single Variable Calculus: Early Transcendentals

For Problems 79-99, answer the question with an algebraic expression. Objective 3 If n represents a whole numbe...

Intermediate Algebra

Sketch the graph of a function f that is continuous on [1, 5] and has the given properties. 10. Absolute maximu...

Single Variable Calculus

Real Zeros of a Polynomial A polynomial P is given. (a) Find all the real zeros of P. (b) Sketch a graph of P. ...

Precalculus: Mathematics for Calculus (Standalone Book)

A certain market has both an express checkout line and a superexpress checkout line. Let X1 denote the number o...

Probability and Statistics for Engineering and the Sciences

f(x) = x3 2x2 + x 1 has a local maximum at: a) 0 b) 1 c) 13 d) f has no local maxima

Study Guide for Stewart's Single Variable Calculus: Early Transcendentals, 8th

Fill in the blanks. 9. a. The statement limxa+ f(x) = L is similar to the statement limxaf(x) = L, but here x i...

Applied Calculus for the Managerial, Life, and Social Sciences: A Brief Approach

Critical Thinking A personnel office is gathering data regarding working conditions. Employees are givena list ...

Understanding Basic Statistics

Scores in the first and fourth (final) rounds for a sample of 20 golfers who competed in PGA tournaments are sh...

STATISTICS F/BUSINESS+ECONOMICS-TEXT

Writing the Terms of a Sequence In Exercises 1-4, write the first five terms of the sequence with the given n t...

Calculus of a Single Variable

In exercises 29 to 35, complete a formal proof. Given:EF is the median of trapezoid ABCD. Prove: EF=12(AB+DC). ...

Elementary Geometry For College Students, 7e

Locate the discontinuities of the function and illustrate by graphing. y=ln(tan2x)

Calculus: Early Transcendentals

Convert each expression in Exercises 25-50 into its technology formula equivalent as in the table in the text. ...

Applied Calculus

Let r = x i + y j + z k and r = |r|. 30. Verify each identity. (a) r = 3 (b) (rr) = 4r (c) 2r3 = 12r

Multivariable Calculus

Find the area of an equilateral triangle with a sides of length 2.5 m each. b apothem of length 3 in.

Elementary Geometry for College Students

16. IQ test scores are standardized to produce a normal distribution with a mean of µ = 100 and a standard devi...

Statistics for The Behavioral Sciences (MindTap Course List)

Find the most general antiderivative of the function. (Check your answer by differentiation.) f(x)=x23+xx

Single Variable Calculus: Early Transcendentals, Volume I

A hypothesis test attempts to rule out chance, or sampling error, as a plausible explanation for the results fr...

Research Methods for the Behavioral Sciences (MindTap Course List)

Determining Differentiability In Exercises 2528, describe the x-values at which the function is differentiable....

Calculus: An Applied Approach (MindTap Course List)

For

Study Guide for Stewart's Multivariable Calculus, 8th

[T] Suppose you go on a road trip and record your speed at every half hour, as compiled in the following table....

Calculus Volume 2

[T] A vehicle has a 20-gal tank and gets 15 mpg. The number of miles N that can be driven depends on the amount...

Calculus Volume 1

y + 2y = f(t), y(0) = 1, where f(t) is given in Figure 7.R.10. FIGURE 7.R.10 Graph for Problem 39

A First Course in Differential Equations with Modeling Applications (MindTap Course List)

Construct a frequency polygon of U.S. Presidents’ ages at inauguration shown in Table 2.15.

Introductory Statistics

11. A technician services mailing machines at companies in the Phoenix area. Depending on the type of malfuncti...

Modern Business Statistics with Microsoft Office Excel (with XLSTAT Education Edition Printed Access Card) (MindTap Course List)

Determine whether the points 2,4,3,1, and 6,4 are collinear.

College Algebra