Math

Discrete Mathematics With ApplicationsIf graphs are allowed to have an infinite number of vertices and edges. then Lemma 10.4.1 is false. Give a counterexample that shows this. In other words. give an example of an “infinite tree” (a connected. circuit-free graph with an infinite number of vertices and edges) that has no vertex of degree 1.BuyFind*arrow_forward*

5th Edition

EPP + 1 other

Publisher: Cengage Learning,

ISBN: 9781337694193

Chapter 10.4, Problem 6ES

Textbook Problem

If graphs are allowed to have an infinite number of vertices and edges. then Lemma 10.4.1 is false. Give a counterexample that shows this. In other words. give an example of an “infinite tree” (a connected. circuit-free graph with an infinite number of vertices and edges) that has no vertex of degree 1.

Discrete Mathematics With Applications

Show all chapter solutions

Ch. 10.1 - Let G be a graph and let v and w be vertices in G....Ch. 10.1 - A graph is connected if, any only if, _____.Ch. 10.1 - Removing an edge from a circuit in a graph does...Ch. 10.1 - An Euler circuit in graph is _____.Ch. 10.1 - A graph has a Euler circuit if, and only if,...Ch. 10.1 - Given vertices v and w in a graph, there is an...Ch. 10.1 - A Hamiltonian circuit in a graph is ______.Ch. 10.1 - If a graph G has a Hamiltonian circuit, then G has...Ch. 10.1 - A travelling salesman problem involves finding a...Ch. 10.1 - In the graph below, determine whether the...

Ch. 10.1 - In the graph below, determine whether the...Ch. 10.1 - Let G be the graph and consider the walk...Ch. 10.1 - Consider the following graph. How many paths are...Ch. 10.1 - Consider the following graph. How many paths are...Ch. 10.1 - An edge whose removal disconnects the graph of...Ch. 10.1 - Given any positive integer n, (a) find a connected...Ch. 10.1 - Find the number of connected components for each...Ch. 10.1 - Each of (a)—(c) describes a graph. In each case...Ch. 10.1 - The solution for Example 10.1.6 shows a graph for...Ch. 10.1 - Is it possible for a citizen of Königsberg to make...Ch. 10.1 - Determine which of the graph in 12-17 have Euler...Ch. 10.1 - Determine which of the graph in 12-17 have Euler...Ch. 10.1 - Determine which of the graph in 12-17 have Euler...Ch. 10.1 - Determine which of the graph in 12-17 have Euler...Ch. 10.1 - Determine which of the graph in 12-17 have Euler...Ch. 10.1 - Determine which of the graph in 12-17 have Euler...Ch. 10.1 - Is it possible to take a walk around the city...Ch. 10.1 - For each of the graph in 19-21, determine whether...Ch. 10.1 - For each of the graph in 19-21, determine whether...Ch. 10.1 - For each of the graph in 19-21, determine whether...Ch. 10.1 - The following is a floor plan of a house. Is it...Ch. 10.1 - Find all subgraph of each of the following graphs.Ch. 10.1 - Find the complement of each of the following...Ch. 10.1 - Find the complement of the graph K4, the complete...Ch. 10.1 - Suppose that in a group of five people A,B,C,D,...Ch. 10.1 - Let G be a simple graph with n vertices. What is...Ch. 10.1 - Show that at a party with at least two people,...Ch. 10.1 - Find Hamiltonian circuits for each of the graph in...Ch. 10.1 - Find Hamiltonian circuits for each of the graph in...Ch. 10.1 - Show that none of graphs in 31-33 has a...Ch. 10.1 - Show that none of graphs in 31-33 has a...Ch. 10.1 - Show that none of graphs in 31-33 has a...Ch. 10.1 - In 34-37, find Hamiltonian circuits for those...Ch. 10.1 - In 34-37, find Hamiltonian circuits for those...Ch. 10.1 - In 34-37, find Hamiltonian circuits for those...Ch. 10.1 - In 34-37, find Hamiltonian circuits for those...Ch. 10.1 - Give two examples of graphs that have Euler...Ch. 10.1 - Give two examples of graphs that have Hamiltonian...Ch. 10.1 - Give two examples of graphs that have circuits...Ch. 10.1 - Give two examples of graphs that have Euler...Ch. 10.1 - A traveler in Europe wants to visit each of the...Ch. 10.1 - a. Prove that if a walk in a graph contains a...Ch. 10.1 - Prove Lemma 10.1.1(a): If G is a connected graph,...Ch. 10.1 - Prove Lemma 10.1.1(b): If vertices v and w are...Ch. 10.1 - Draw a picture to illustrate Lemma 10.1.1(c): If a...Ch. 10.1 - Prove that if there is a trail in a graph G from a...Ch. 10.1 - If a graph contains a circuits that starts and...Ch. 10.1 - Prove that if there is a circuit in a graph that...Ch. 10.1 - Let G be a connected graph, and let C be any...Ch. 10.1 - Prove that any graph with an Euler circuit is...Ch. 10.1 - Prove Corollary 10.1.5.Ch. 10.1 - For what values of n dies the complete graph Kn...Ch. 10.1 - For what values of m and n does the complete...Ch. 10.1 - What is the maximum number of edges a simple...Ch. 10.1 - Prove that if G is any bipartite graph, then every...Ch. 10.1 - An alternative proof for Theorem 10.1.3 has the...Ch. 10.2 - In the adjacency matrix for a directed graph, the...Ch. 10.2 - In the adjacency matrix for an undirected graph,...Ch. 10.2 - An n × n square matrix is called symmetric if, and...Ch. 10.2 - The ijth entry in the produce of two matrices A...Ch. 10.2 - In an n × n identity matrix, the entries on the...Ch. 10.2 - If G is a graph with vertices v1, v2, …., vn and A...Ch. 10.2 - Find real numbers a, b, and c such that the...Ch. 10.2 - Find the adjacency matrices for the following...Ch. 10.2 - Find directed graphs that have the following...Ch. 10.2 - Find adjacency matrices for the following...Ch. 10.2 - Find graphs that have the following adjacency...Ch. 10.2 - The following are adjacency matrices for graphs....Ch. 10.2 - Suppose that for every positive integer I, all the...Ch. 10.2 - Find each of the following products. [21][13]...Ch. 10.2 - Find each of the following products? a....Ch. 10.2 - Let A = [ 1 1 1 0 2 1] , B = [ 2 0 1 3] and C =...Ch. 10.2 - Give an example different from that in the text to...Ch. 10.2 - Let O denote the matrix [0000] . Find 2 × 2...Ch. 10.2 - Let O denote the matrix [0000] . Find 2 × 2...Ch. 10.2 - In 14-18, assume the entries of all matrices are...Ch. 10.2 - In 14-18, assume the entries of all matrices are...Ch. 10.2 - In 14-18, assume the entries of all matrices are...Ch. 10.2 - In 14-18, assume the entries of all matrices are...Ch. 10.2 - In 14—18, assume the entries of all matrices are...Ch. 10.2 - Let A = [112101210] . Find A2 and A3. Let G be the...Ch. 10.2 - The following is an adjacency matrix for a graph:...Ch. 10.2 - Let A be the adjacency matrix for K3, the complete...Ch. 10.2 - Draw a graph that has [0001200011000211120021100]...Ch. 10.2 - Let G be a graph with n vertices, and let v and w...Ch. 10.3 - If G and G’ are graphs, then G is isomorphic to G’...Ch. 10.3 - A property P is an invariant for graph isomorphism...Ch. 10.3 - Some invariants for graph isomorphism are , , , ,...Ch. 10.3 - For each pair of graphs G and G’ in 1-5, determine...Ch. 10.3 - For each pair of graphs G and G’ in 1-5, determine...Ch. 10.3 - For each pair of graphs G and G’ in 1-5, determine...Ch. 10.3 - For each pair of graphs G and G’ in 1-5, determine...Ch. 10.3 - For each pair of graphs G and G in 1—5, determine...Ch. 10.3 - For each pair of graphs G and G’ in 6-13,...Ch. 10.3 - For each pair of graphs G and G’ in 6-13,...Ch. 10.3 - For each pair of graphs G and G’ in 6-13,...Ch. 10.3 - For each pair of graphs G and G’ in 6-13,...Ch. 10.3 - For each pair of graphs G and G’ in 6-13,...Ch. 10.3 - For each pair of graphs G and G’ in 6-13,...Ch. 10.3 - For each pair of simple graphs G and G in 6—13,...Ch. 10.3 - For each pair of graphs G and G’ in 6-13,...Ch. 10.3 - Draw all nonisomorphic simple graphs with three...Ch. 10.3 - Draw all nonisomorphic simple graphs with four...Ch. 10.3 - Draw all nonisomorphic graphs with three vertices...Ch. 10.3 - Draw all nonisomorphic graphs with four vertices...Ch. 10.3 - Draw all nonisomorphic graphs with four vertices...Ch. 10.3 - Draw all nonisomorphic graphs with six vertices,...Ch. 10.3 - Draw four nonisomorphic graphs with six vertices,...Ch. 10.3 - Prove that each of the properties in 21-29 is an...Ch. 10.3 - Prove that each of the properties in 21-29 is an...Ch. 10.3 - Prove that each of the properties in 21-29 is an...Ch. 10.3 - Prove that each of the properties in 21-29 is an...Ch. 10.3 - Prove that each of the properties in 21-29 is an...Ch. 10.3 - Prove that each of the properties in 21-29 is an...Ch. 10.3 - Prove that each of the properties in 21-29 is an...Ch. 10.3 - Prove that each of the properties in 21-29 is an...Ch. 10.3 - Prove that each of the properties in 21-29 is an...Ch. 10.3 - Show that the following two graphs are not...Ch. 10.4 - A circuit-free graph is a graph with __________.Ch. 10.4 - A forest is a graph that is _________, and a tree...Ch. 10.4 - A trivial tree is a graph that consists of...Ch. 10.4 - Any tree with at least two vertices has at least...Ch. 10.4 - If a tree T has at least two vertices, then a...Ch. 10.4 - For any positive integer n, any tree with n...Ch. 10.4 - For any positive integer n, if G is a connected...Ch. 10.4 - Read the tree in Example 10.4.2 from left to right...Ch. 10.4 - Draw trees to show the derivations of the...Ch. 10.4 - What is the total degree of a tree with n...Ch. 10.4 - Let G be the graph of a hydrocarbon molecule with...Ch. 10.4 - Extend the argument given in the proof of Lemma...Ch. 10.4 - If graphs are allowed to have an infinite number...Ch. 10.4 - Find all leaves (or terminal vertices) and all...Ch. 10.4 - In each of 8—21, either draw a graph with the...Ch. 10.4 - In each of 8—21, either draw a graph with the...Ch. 10.4 - In each of 8—21, either draw a graph with the...Ch. 10.4 - In each of 8—21, either draw a graph with the...Ch. 10.4 - In each of 8—21, either draw a graph with the...Ch. 10.4 - In each of 8—21, either draw a graph with the...Ch. 10.4 - In each of 8—21, either draw a graph with the...Ch. 10.4 - In each of 8—21, either draw a graph with the...Ch. 10.4 - In each of 8—21, either draw a graph with the...Ch. 10.4 - In each of 8—21, either draw a graph with the...Ch. 10.4 - In each of 8—21, either draw a graph with the...Ch. 10.4 - In each of 8—21, either draw a graph with the...Ch. 10.4 - In each of 8—21, either draw a graph with the...Ch. 10.4 - In each of 8—21, either draw a graph with the...Ch. 10.4 - A connected graph has twelve vertices and eleven...Ch. 10.4 - A connected graph has nine vertices and twelve...Ch. 10.4 - Suppose that v is a vertex of degree 1 in a...Ch. 10.4 - A graph has eight vertices and six edges. Is it...Ch. 10.4 - If a graph has n vertices and n2 or fewer can it...Ch. 10.4 - A circuit-free graph has ten vertices and nine...Ch. 10.4 - Is a circuit-free graph with n vertices and at...Ch. 10.4 - Prove that every nontrivial tree has at least two...Ch. 10.4 - Find all nonisomorphic trees with five vertices.Ch. 10.4 - a. Prove that the following is an invariant for...Ch. 10.5 - A rooted tree is a tree in which . The level of a...Ch. 10.5 - A binary tree is a rooted tree in which .Ch. 10.5 - A full binary tree is a rooted tree in which .Ch. 10.5 - If k is a positive integer and T is a full binary...Ch. 10.5 - If T is a binary tree that has t leaves and height...Ch. 10.5 - Consider the tree shown below with root a. a. What...Ch. 10.5 - Consider the tree shown below with root v0 . a....Ch. 10.5 - Draw binary trees to represent the following...Ch. 10.5 - In each of 4—20, either draw a graph with the...Ch. 10.5 - In each of 4—20, either draw a graph with the...Ch. 10.5 - In each of 4—20, either draw a graph with the...Ch. 10.5 - In each of 4—20, either draw a graph with the...Ch. 10.5 - In each of 4—20, either draw a graph with the...Ch. 10.5 - In each of 4—20, either draw a graph with the...Ch. 10.5 - In each of 4—20, either draw a graph with the...Ch. 10.5 - In each of 4—20, either draw a graph with the...Ch. 10.5 - In each of 4—20, either draw a graph with the...Ch. 10.5 - In each of 4—20, either draw a graph with the...Ch. 10.5 - In each of 4—20, either draw a graph with the...Ch. 10.5 - In each of 4—20, either draw a graph with the...Ch. 10.5 - In each of 4—20, either draw a graph with the...Ch. 10.5 - In each of 4—20, either draw a graph with the...Ch. 10.5 - In each of 4—20, either draw a graph with the...Ch. 10.5 - In each of 4—20, either draw a graph with the...Ch. 10.5 - In each of 4—20, either draw a graph with the...Ch. 10.5 - In 21-25, use the steps of Algorithm 10.5.1 to...Ch. 10.5 - In 21-25, use the steps of Algorithm 10.5.1 to...Ch. 10.5 - In 21-25, use the steps of Algorithm 10.5.1 to...Ch. 10.5 - In 21-25, use the steps of Algorithm 10.5.1 to...Ch. 10.5 - In 21-25, use the steps of Algorithm 10.5.1 to...Ch. 10.6 - A spanning tree for a graph G is .Ch. 10.6 - A weighted graph is a graph for which and the...Ch. 10.6 - A minimum spanning tree for a connected, weighted...Ch. 10.6 - In Kruskal’s algorithm, the edges of a connected,...Ch. 10.6 - In Prim’s algorithm, a minimum spanning tree is...Ch. 10.6 - In Dijkstra’s algorithm, a vertex is in the fringe...Ch. 10.6 - At each stage of Dijkstra’s algorithm, the vertex...Ch. 10.6 - Find all possible spanning trees for each of the...Ch. 10.6 - Find all possible spanning trees for each of the...Ch. 10.6 - Find a spanning trees for each of the graphs in 3...Ch. 10.6 - Find a spanning trees for each of the graphs in 3...Ch. 10.6 - Use Kruskal’s algorithm to find a minimum spanning...Ch. 10.6 - Use Kruskal’s algorithm to find a minimum spanning...Ch. 10.6 - Use Prim’s algorithm starting with vertex a or...Ch. 10.6 - Use Prim’s algorithm starting with vertex a or...Ch. 10.6 - For each of the graphs in 9 and 10, find all...Ch. 10.6 - For each of the graphs in 9 and 10, find all...Ch. 10.6 - A pipeline is to be built that will link six...Ch. 10.6 - Use Dijkstra’s algorithm for the airline route...Ch. 10.6 - Use Dijkstra’s algorithm to find the shortest path...Ch. 10.6 - Use Dijkstra’s algorithm to find the shortest path...Ch. 10.6 - Use Dijkstra’s algorithm to find the shortest path...Ch. 10.6 - Use Dijkstra’s algorithm to find the shortest path...Ch. 10.6 - Prove part (2) of Proposition 10.6.1: Any two...Ch. 10.6 - Given any two distinct vertices of a tree, there...Ch. 10.6 - Prove that if G is a graph with spanning tree T...Ch. 10.6 - Suppose G is a connected graph and T is a...Ch. 10.6 - a. Suppose T1 and T2 are two different spanning...Ch. 10.6 - Prove that an edge e is contained in every...Ch. 10.6 - Consider the spanning trees T1and T2in the proof...Ch. 10.6 - Suppose that T is a minimum spanning tree for a...Ch. 10.6 - Prove that if G is a connected, weighted graph and...Ch. 10.6 - If G is a connected, weighted graph and no two...Ch. 10.6 - Prove that if G is a connected, weighted graph and...Ch. 10.6 - Suppose a disconnected graph is input to Kruskal’s...Ch. 10.6 - Suppose a disconnected graph is input to Prim’s...Ch. 10.6 - Modify Algorithm 10.6.3 so that the output...Ch. 10.6 - Prove that if a connected, weighted graph G is...

Find more solutions based on key concepts

Show solutions Find the measure of the missing angle in Illustration 2. ILLUSTRATION 2

Elementary Technical Mathematics

35. Modeling World population The table gives the actual or projected world population in billions for selected...

Mathematical Applications for the Management, Life, and Social Sciences

In the following exercises, you will explore some of your calculators graphing capabilities. Answers are not gi...

Mathematics: A Practical Odyssey

In Exercises 1518, find X2 the probability distribution of the system after two observations for the distributi...

Finite Mathematics for the Managerial, Life, and Social Sciences

Express each volume in Exercises 35 through 40 as indicated. Round each answer to the same number of significan...

Mathematics For Machine Technology

Find the x-intercepts of the parabola given by the equation. y=x24x5

Mathematical Excursions (MindTap Course List)

In Exercises 516, evaluate the given quantity. log218

Finite Mathematics

Explain how a researcher using simple random sampling can still obtain a biased sample.

Research Methods for the Behavioral Sciences (MindTap Course List)

Draw the vector V that goes from the origin to the given point. Then write V in component form a,b . (3,3)

Trigonometry (MindTap Course List)

A manufacturer has a monthly fixed cost of 40,000 and a production cost of 8 for each unit produced. The produc...

Applied Calculus for the Managerial, Life, and Social Sciences: A Brief Approach

The following data are from a repeated-measures study comparing two treatment conditions. a. Use a repeated-mea...

Statistics for The Behavioral Sciences (MindTap Course List)

Comparing VectorsIn Exercises 25 and 26, determine whether u and v are orthogonal, parallel, or neither. u=7,2,...

Calculus (MindTap Course List)

The spotlight effect refers to overestimating the extent to which others notice your appearance or behavior, es...

Essentials of Statistics for The Behavioral Sciences (MindTap Course List)

Describe in words the surface whose equation is given. 5. = /3

Multivariable Calculus

Consider a sample with data values of 10, 20, 12, 17, and 16. Compute the variance and standard deviation.

STATISTICS F/BUSINESS+ECONOMICS-TEXT

Describe the disadvantages of a multiple-treatment design, compared to a two-treatment design, for a within-sub...

Research Methods for the Behavioral Sciences (MindTap Course List)

Identify the conic as a circle, parabola, ellipse, or hyperbola. x2+(y4)2=12

College Algebra (MindTap Course List)

Identifying and Graphing a Conic Determine whether the equation represents an ellipse, a parabola, a hyperbola,...

Precalculus: Mathematics for Calculus (Standalone Book)

Comparing Compact SUVs. Consumer Reports evaluates products for consumers. The file CompactSUV contains the dat...

Essentials Of Statistics For Business & Economics

Two Wheeler-Dealer Bike Shop has a 22-inch off-road racer on sale this month for $239.95. If the original price...

Contemporary Mathematics for Business & Consumers

(a) Find the intervals of increase or decrease. (b) Find the local maximum and minimum values. (c) Find the int...

Single Variable Calculus: Early Transcendentals, Volume I

Solve the inequality in terms of intervals and illustrate the solution set on the real number line. 22. 5 3 2...

Single Variable Calculus

For each theorem stated in Exercises 13 to 18, make a Drawing. On the basis of your Drawing, write a Given and ...

Elementary Geometry For College Students, 7e

A point P needs to be located somewhere on the line AD so that the total length L of cables linking P to the po...

Single Variable Calculus: Early Transcendentals

Finding a Derivative In Exercises 27-40, use the limit definition to find the derivative of the function. See E...

Calculus: An Applied Approach (MindTap Course List)

Expand Your Knowledge: Estimating the Standard DeviationConsumer Reports gave information about the ages at whi...

Understanding Basic Statistics

Racing cars driven by Chris and Kelly are side by side at the start of a race. The table shows the velocities o...

Calculus: Early Transcendentals

a Show that the planes x+yz=1 and 2x3y+4z=5 are neither parallel nor perpendicular. b Find, correct to the near...

Calculus (MindTap Course List)

Distance Between Parallel PlanesShow that the distance between the parallel planes ax+by+cz+d1=0 and ax+by+cz+d...

Multivariable Calculus

Evaluate expressions in Exercises 3756, rounding your answer to four significant digits where necessary. 45

Applied Calculus

Graphical, Numerical, and Analytic Analysis In Exercises 75-82, use a graphing utility to graph the function an...

Calculus of a Single Variable

Consider four independent events A1, A2, A3, and A4, and let pi 5 P(Ai) for i 5 1,2,3,4. Express the probabilit...

Probability and Statistics for Engineering and the Sciences

For Problems 51-78, simplify each of the numerical expressions. Objective 3 7+82

Intermediate Algebra

Air pollution control specialists in southern California monitor the amount of ozone, carbon dioxide, and nitro...

Statistics for Business & Economics, Revised (MindTap Course List)

Limiting values Find the limiting value of 7+a0.6t.

Functions and Change: A Modeling Approach to College Algebra (MindTap Course List)

Finding the Arc Length of a Curve in Space In Exercises 59-62, sketch the space curve and find its length over ...

Calculus: Early Transcendental Functions

The gradient vector field for is:

Study Guide for Stewart's Multivariable Calculus, 8th

For f(x) = cos1(2x), f(x) = a) 114x2 b) 214x2 c) 414x2 d) 814x2

Study Guide for Stewart's Single Variable Calculus: Early Transcendentals, 8th

In a distribution of scores with a mean of 35 and a standard deviation of 4, which event is more likely: that a...

Essentials Of Statistics

The report Young People Living on the Edge (Greenberg Quinlan Rosner Research, 2008) summarizes a survey of peo...

Introduction To Statistics And Data Analysis

Find all homomorphic images of the quaternion group.

Elements Of Modern Algebra

Solve the equations in Exercises 126. x4x2=6

Finite Mathematics and Applied Calculus (MindTap Course List)

Expanding a Logarithmic Expression In Exercises 127 and 128, use the properties of logarithms to expand the log...

Calculus: Early Transcendental Functions (MindTap Course List)

In Exercises 15 to 18, consider rhombus ABCD with diagonals ACandDB. When the answer is not a whole number, lea...

Elementary Geometry for College Students

In the following exercises, assume that limx6f(x)=4,limx6g(x)=9,andlimx6h(x)=6 . Use these three facts and the ...

Calculus Volume 1

For the following exercises, find the exact area of the region bounded by the given equations if possible. If y...

Calculus Volume 2

In Problems 122 solve the given differential equation by separation of variables. 8. exydydx=ey+e2xy

A First Course in Differential Equations with Modeling Applications (MindTap Course List)

An automobile dealer conducted a test to determine whether the time needed to complete a minor engine tune-up d...

Modern Business Statistics with Microsoft Office Excel (with XLSTAT Education Edition Printed Access Card) (MindTap Course List)

Solving a System with a Nonlinear Equation In Exercises 29-32, solve the system by the method of substitution. ...

College Algebra

Find the probability that x falls in the shaded area. Figure 5.43

Introductory Statistics