   Chapter 10.5, Problem 12E ### Mathematical Applications for the ...

11th Edition
Ronald J. Harshbarger + 1 other
ISBN: 9781305108042

#### Solutions

Chapter
Section ### Mathematical Applications for the ...

11th Edition
Ronald J. Harshbarger + 1 other
ISBN: 9781305108042
Textbook Problem

# For each function in Problems 11-18, find any horizontal and vertical asymptotes, and use information from the first derivative to sketch the graph. f ( x ) = 5 x − 15 x + 2

To determine

To calculate: The horizontal and vertical for the provided function f(x)=5x15x+2 and sketch its graph.

Explanation

Given Information:

The provided function is f(x)=5x15x+2.

Formula used:

A vertical asymptote of a rational function h(x)=f(x)g(x) is x=a where g(a)=0 and f(a)0.

A horizontal asymptote of a rational function h(x)=f(x)g(x) is,

Step 1. A line y=0 if the degree of the numerator is less than the degree of the denominator.

Step 2. The line y=anbn ratio of the leading coefficients if the degree of the numerator is equal to the degree of the denominator.

Step 3. Does not exist the degree of the numerator is greater than the degree of the denominator.

To find relative maxima and minima of a function,

1. Set the first derivative of the function to zero f'(x)=0, to find the critical values of the function.

2. Substitute the critical values into f(x) and calculate the critical points.

3. Calculate the sign of the function to the left and right of the critical values.

If f(x)<0 and f(x)>0 on the left and right side respectively of a critical value, then the point is relative minimum.

If f(x)>0 and f(x)<0 on the left and right side respectively of a critical value, then the point is relative maximum.

Calculation:

Consider the provided function,

f(x)=5x15x+2

Recall that a vertical asymptote of a rational function h(x)=f(x)g(x) is x=a where, g(a)=0 and f(a)0.

Set the denominator x+2 of the function equal to zero.

x+2=0x=2

Substitute 2 for x in the numerator.

5x15=5(2)15=1015=250

Thus, the vertical asymptote is the line x=2.

Degree of the numerator and denominator of the function f(x)=5x15x+2 is 1.

Thus, the horizontal asymptote is the line y= ratio of the leading coefficients.

Since, the leading coefficient in the numerator is 5 and in the denominator is 1.

Thus, the horizontal asymptote is,

y=51=5

Now, calculate the first derivative of the function f(x)=5x15x+2

### Still sussing out bartleby?

Check out a sample textbook solution.

See a sample solution

#### The Solution to Your Study Problems

Bartleby provides explanations to thousands of textbook problems written by our experts, many with advanced degrees!

Get Started

#### Explain what happens during each of the two stages of the two-factor ANOVA.

Essentials of Statistics for The Behavioral Sciences (MindTap Course List)

#### Find the limit or show that it does not exist. limx(x2+1)

Single Variable Calculus: Early Transcendentals, Volume I

#### Expand each expression in Exercises 122. (3x+1)2

Finite Mathematics and Applied Calculus (MindTap Course List)

#### For f(x)=xx+1,f(x)=. a) 1 b) x2(x+1)2 c) 1(x+1)2 d) 1(x+1)2

Study Guide for Stewart's Single Variable Calculus: Early Transcendentals, 8th

#### The range of is: (−∞,∞) [0, ∞) (0, ∞) [1, ∞]

Study Guide for Stewart's Multivariable Calculus, 8th 