BuyFindarrow_forward

Mathematical Applications for the ...

11th Edition
Ronald J. Harshbarger + 1 other
ISBN: 9781305108042

Solutions

Chapter
Section
BuyFindarrow_forward

Mathematical Applications for the ...

11th Edition
Ronald J. Harshbarger + 1 other
ISBN: 9781305108042
Textbook Problem

In Problems 19-24, a function and its first and second derivatives are given. Use these to find any horizontal and vertical asymptotes, critical points, relative maxima, relative minima, and points of inflection. Then sketch the graph of each function.

y = x ( x 1 ) 2

y ' = x + 1 ( x 1 ) 3

y " = 2 x + 4 ( x 1 ) 4

To determine

To calculate: The vertical asymptote, horizontal asymptote, relative minimum, relative maximum and points of inflection for the provided equation y=x(x1)2 and the first derivative y'=x+1(x1)3 and second derivative y"=2x+4(x1)4 and sketch its graph.

Explanation

Given Information:

The provided equation is y=x(x1)2 and the first derivative y'=x+1(x1)3 and second derivative y"=2x+4(x1)4.

Formula used:

A vertical asymptote of a function f(x) is a line x=a such that f(a)=.

A vertical asymptote of a rational function h(x)=f(x)g(x) is x=a where g(a)=0 and f(a)0.

A horizontal asymptote of a function f(x) is a line y=b such that limxf(x)=b or limxf(x)=b.

A horizontal asymptote of a rational function h(x)=f(x)g(x) is

1. A line y=0 if the degree of the numerator is less than the degree of the denominator.

2. The line y= ratio of the leading coefficients if the degree of the numerator is equal to the degree of the denominator.

3. Does not exist if the degree of the numerator is greater than the degree of the denominator.

To find relative maxima and minima of a equation,

1. Set the first derivative of the equation to zero, f'(x)=0, to find the critical values of the equation.

2. Substitute the critical values into f(x) and calculate the critical points.

3. Evaluate f(x) at each critical value for which f(x)=0.

(a) If f(x0)<0, a relative maximum occurs at x0.

(b) If f(x0)>0, a relative minimum occurs at x0.

(c) If f(x0)=0 or f(x0) is undefined, the second derivative test fails and then use the first derivative test.

Calculation:

Consider the provided function,

y=x(x1)2

Recall that a vertical asymptote of a rational function h(x)=f(x)g(x) is x=a where g(a)=0 and f(a)0.

Set the denominator of the function equal to zero.

(x1)2=0x1=0x=1

Thus, vertical asymptote is x=1.

Degree of the numerator is 1 and denominator is 2 of the function y=x(x1)2.

Since, the degree of the numerator is less than the denominator.

Thus, the horizontal asymptote is y=0.

Now, consider the first derivative of the function y'=x+1(x1)3.

Now, to obtain the critical values, set y'=0 as,

x+1(x1)3=0(x+1)=0x+1=0

Thus, x+1=0

Still sussing out bartleby?

Check out a sample textbook solution.

See a sample solution

The Solution to Your Study Problems

Bartleby provides explanations to thousands of textbook problems written by our experts, many with advanced degrees!

Get Started

Chapter 10 Solutions

Show all chapter solutions add
Sect-10.1 P-7ESect-10.1 P-8ESect-10.1 P-9ESect-10.1 P-10ESect-10.1 P-11ESect-10.1 P-12ESect-10.1 P-13ESect-10.1 P-14ESect-10.1 P-15ESect-10.1 P-16ESect-10.1 P-17ESect-10.1 P-18ESect-10.1 P-19ESect-10.1 P-20ESect-10.1 P-21ESect-10.1 P-22ESect-10.1 P-23ESect-10.1 P-24ESect-10.1 P-25ESect-10.1 P-26ESect-10.1 P-27ESect-10.1 P-28ESect-10.1 P-29ESect-10.1 P-30ESect-10.1 P-31ESect-10.1 P-32ESect-10.1 P-33ESect-10.1 P-34ESect-10.1 P-35ESect-10.1 P-36ESect-10.1 P-37ESect-10.1 P-38ESect-10.1 P-39ESect-10.1 P-40ESect-10.1 P-41ESect-10.1 P-42ESect-10.1 P-43ESect-10.1 P-44ESect-10.1 P-45ESect-10.1 P-46ESect-10.1 P-47ESect-10.1 P-48ESect-10.1 P-49ESect-10.1 P-50ESect-10.1 P-51ESect-10.1 P-52ESect-10.1 P-53ESect-10.1 P-54ESect-10.1 P-55ESect-10.1 P-56ESect-10.1 P-57ESect-10.1 P-58ESect-10.1 P-59ESect-10.1 P-60ESect-10.1 P-61ESect-10.1 P-62ESect-10.1 P-63ESect-10.1 P-64ESect-10.1 P-65ESect-10.2 P-1CPSect-10.2 P-2CPSect-10.2 P-3CPSect-10.2 P-4CPSect-10.2 P-1ESect-10.2 P-2ESect-10.2 P-3ESect-10.2 P-4ESect-10.2 P-5ESect-10.2 P-6ESect-10.2 P-7ESect-10.2 P-8ESect-10.2 P-9ESect-10.2 P-10ESect-10.2 P-11ESect-10.2 P-12ESect-10.2 P-13ESect-10.2 P-14ESect-10.2 P-15ESect-10.2 P-16ESect-10.2 P-17ESect-10.2 P-18ESect-10.2 P-19ESect-10.2 P-20ESect-10.2 P-21ESect-10.2 P-22ESect-10.2 P-23ESect-10.2 P-24ESect-10.2 P-25ESect-10.2 P-26ESect-10.2 P-27ESect-10.2 P-28ESect-10.2 P-29ESect-10.2 P-30ESect-10.2 P-31ESect-10.2 P-32ESect-10.2 P-33ESect-10.2 P-34ESect-10.2 P-35ESect-10.2 P-36ESect-10.2 P-37ESect-10.2 P-38ESect-10.2 P-39ESect-10.3 P-1CPSect-10.3 P-2CPSect-10.3 P-3CPSect-10.3 P-4CPSect-10.3 P-1ESect-10.3 P-2ESect-10.3 P-3ESect-10.3 P-5ESect-10.3 P-6ESect-10.3 P-7ESect-10.3 P-8ESect-10.3 P-9ESect-10.3 P-10ESect-10.3 P-11ESect-10.3 P-12ESect-10.3 P-13ESect-10.3 P-14ESect-10.3 P-15ESect-10.3 P-16ESect-10.3 P-17ESect-10.3 P-18ESect-10.3 P-19ESect-10.3 P-20ESect-10.3 P-21ESect-10.3 P-22ESect-10.3 P-23ESect-10.3 P-24ESect-10.3 P-25ESect-10.3 P-26ESect-10.3 P-27ESect-10.3 P-28ESect-10.3 P-29ESect-10.3 P-30ESect-10.3 P-33ESect-10.3 P-34ESect-10.3 P-35ESect-10.3 P-36ESect-10.3 P-37ESect-10.3 P-38ESect-10.3 P-39ESect-10.3 P-40ESect-10.3 P-41ESect-10.3 P-42ESect-10.3 P-43ESect-10.3 P-47ESect-10.3 P-48ESect-10.3 P-49ESect-10.4 P-1CPSect-10.4 P-2CPSect-10.4 P-3CPSect-10.4 P-1ESect-10.4 P-2ESect-10.4 P-3ESect-10.4 P-4ESect-10.4 P-5ESect-10.4 P-6ESect-10.4 P-7ESect-10.4 P-8ESect-10.4 P-9ESect-10.4 P-10ESect-10.4 P-11ESect-10.4 P-12ESect-10.4 P-13ESect-10.4 P-14ESect-10.4 P-15ESect-10.4 P-16ESect-10.4 P-17ESect-10.4 P-18ESect-10.4 P-19ESect-10.4 P-20ESect-10.4 P-21ESect-10.4 P-22ESect-10.4 P-23ESect-10.4 P-24ESect-10.4 P-25ESect-10.4 P-26ESect-10.4 P-27ESect-10.4 P-28ESect-10.4 P-29ESect-10.4 P-30ESect-10.4 P-31ESect-10.4 P-32ESect-10.4 P-33ESect-10.5 P-1CPSect-10.5 P-2CPSect-10.5 P-1ESect-10.5 P-2ESect-10.5 P-3ESect-10.5 P-4ESect-10.5 P-5ESect-10.5 P-6ESect-10.5 P-7ESect-10.5 P-8ESect-10.5 P-9ESect-10.5 P-10ESect-10.5 P-11ESect-10.5 P-12ESect-10.5 P-13ESect-10.5 P-14ESect-10.5 P-15ESect-10.5 P-16ESect-10.5 P-17ESect-10.5 P-18ESect-10.5 P-19ESect-10.5 P-20ESect-10.5 P-21ESect-10.5 P-22ESect-10.5 P-23ESect-10.5 P-24ESect-10.5 P-25ESect-10.5 P-26ESect-10.5 P-27ESect-10.5 P-28ESect-10.5 P-29ESect-10.5 P-30ESect-10.5 P-31ESect-10.5 P-32ESect-10.5 P-33ESect-10.5 P-34ESect-10.5 P-35ESect-10.5 P-36ESect-10.5 P-37ESect-10.5 P-38ESect-10.5 P-39ESect-10.5 P-40ESect-10.5 P-41ESect-10.5 P-42ESect-10.5 P-43ECh-10 P-1RECh-10 P-2RECh-10 P-3RECh-10 P-4RECh-10 P-5RECh-10 P-6RECh-10 P-7RECh-10 P-8RECh-10 P-9RECh-10 P-10RECh-10 P-11RECh-10 P-12RECh-10 P-13RECh-10 P-14RECh-10 P-15RECh-10 P-16RECh-10 P-17RECh-10 P-18RECh-10 P-19RECh-10 P-20RECh-10 P-21RECh-10 P-22RECh-10 P-23RECh-10 P-24RECh-10 P-25RECh-10 P-26RECh-10 P-27RECh-10 P-28RECh-10 P-29RECh-10 P-30RECh-10 P-31RECh-10 P-32RECh-10 P-33RECh-10 P-34RECh-10 P-35RECh-10 P-36RECh-10 P-37RECh-10 P-38RECh-10 P-39RECh-10 P-40RECh-10 P-41RECh-10 P-42RECh-10 P-43RECh-10 P-44RECh-10 P-45RECh-10 P-46RECh-10 P-47RECh-10 P-48RECh-10 P-49RECh-10 P-50RECh-10 P-51RECh-10 P-52RECh-10 P-53RECh-10 P-54RECh-10 P-55RECh-10 P-1TCh-10 P-2TCh-10 P-3TCh-10 P-4TCh-10 P-5TCh-10 P-6TCh-10 P-7TCh-10 P-8TCh-10 P-9TCh-10 P-10TCh-10 P-11TCh-10 P-12TCh-10 P-13TCh-10 P-14TCh-10 P-15TCh-10 P-16TCh-10 P-17T

Additional Math Solutions

Find more solutions based on key concepts

Show solutions add

Simplify the expressions in Exercises 97106. x1/2y2x1/2y

Finite Mathematics and Applied Calculus (MindTap Course List)

Given the equation 2x + 3y = 4, answer the following questions: a. Is the slope of the line described by this e...

Applied Calculus for the Managerial, Life, and Social Sciences: A Brief Approach

For the following set of stores, find the value of each expression: a. X b. (X) c. (X 3) d. (X 3) X 4 5 2 1 3

Essentials of Statistics for The Behavioral Sciences (MindTap Course List)

The critical numbers of f(x) = 3x4 = 20x3 36x2 are: a) 0, 1, 6 b) 0, 1, 6 c) 0, 1, 6 d) 0, 1, 6

Study Guide for Stewart's Single Variable Calculus: Early Transcendentals, 8th