   Chapter 11, Problem 108AE

Chapter
Section
Textbook Problem

# Specifications for lactated Ringer’s solution, which is used for intravenous (IV) injections, are as follows to reach 100. mL of solution:    285–315 mg Na+    14.1–17.3 mg K+    4.9–6.0 mg Ca2+    368–408 mg Cl–    231–261 mg lactate, C3H5O3–    a. Specify the amount of NaCl, KCl, CaCl2 · 2H2O, and NaC3H5O3 needed to prepare 100. mL lactated Ringer’s solution.    b. What is the range of the osmotic pressure of the solution at 37°C, given the preceding specifications?

Interpretation Introduction

Interpretation:

The amount of reagents required and range of osmotic pressure has to be calculated.

Concept Introduction:

The mass of the compound is calculated by taking the products of molar mass of the compound to the given mass. The mass of compound can be given by,

Massofcompound(ingrams)=Molarmass(ing)×Givenmass(ing)

Explanation

Mass of Sodium = 285-315mg

Mass of Potassium = 14.1-17.3mg

Mass of Calcium = 4.9-6.0mg

Mass of Chlorine = 368-408mg

Mass of Lactate = 231-261mg

To calculate the mass of individual elements

Molar mass of Sodium lactate = 112.06mg

Molar mass of Lactate = 89.07mg

Molar mass of CaCl2.2H2O = 147.01mg

Molecular mass of Calcium = 40.08mg

Molar mass of KCl = 74.55mg

Molecular weight of Potassium = 39.10mg

Molar mass of NaCl = 58.44mg

Molecular mass of Sodium= 22.99mg

The average values for each ion are,

300.00mgNa+,15.7mgK+,5.45mgCa2+,388mgCl-and246mgLactate

The source of Lactate is NaC3H5O3

Mass of Lactate = 246mgC3H5O3-×112.06mgNaC3H5O389.07mgC3H5O3-=309.5mg

The source of Ca2+ is CaCl2.2H2O

Mass of CaCl2.2H2O = 5.45mgCa2+×147.01mgCaCl2.2H2O40.08mgCa2+=20mgCaCl2.2H2O

The source of K+ is KCl

Mass of KCl = 15.7mgK+×74

Interpretation Introduction

Interpretation:

The osmotic pressure at minimum and maximum concentration has to be calculated.

Concept Introduction:

Colligative properties of a substance include the depression in the freezing point, elevation of boiling-point and osmotic pressure. These are dependant only on the number present and not based on the solute particles present in an ideal solution.

The osmotic pressure can be given by the equation,

Π=MRT

Here,Π=OsmoticpressureM=MolarityofsolutionR=GaslawconstantT=Temperature

### Still sussing out bartleby?

Check out a sample textbook solution.

See a sample solution

#### The Solution to Your Study Problems

Bartleby provides explanations to thousands of textbook problems written by our experts, many with advanced degrees!

Get Started 