BuyFindarrow_forward

Mathematical Applications for the ...

11th Edition
Ronald J. Harshbarger + 1 other
ISBN: 9781305108042

Solutions

Chapter
Section
BuyFindarrow_forward

Mathematical Applications for the ...

11th Edition
Ronald J. Harshbarger + 1 other
ISBN: 9781305108042
Textbook Problem

Let x 2 + y 2 = 100

If d x d t = 2 , find d y d t when x = 6 and y = 8.

To determine

To calculate: The value of dydt, if dxdt=2 when x=6 and y=8 and the given equation is x2+y2=100.

Explanation

Given Information:

The provided equation is x2+y2=100.

The provided values are dxdt=2, when x=6 and y=8.

Formula Used:

The power rule of the differentiation:

ddx(xn)=nxn1

Calculation:

The provided expression is x2+y2=100,

Differentiate the function with respect to t,

ddt(x2+y2)=ddt(100)ddt(x2)+ddt(y2)=0

Apply the power rule of derivative:

2xdx

Still sussing out bartleby?

Check out a sample textbook solution.

See a sample solution

The Solution to Your Study Problems

Bartleby provides explanations to thousands of textbook problems written by our experts, many with advanced degrees!

Get Started

Chapter 11 Solutions

Show all chapter solutions add
Sect-11.1 P-7ESect-11.1 P-8ESect-11.1 P-9ESect-11.1 P-10ESect-11.1 P-11ESect-11.1 P-12ESect-11.1 P-13ESect-11.1 P-14ESect-11.1 P-15ESect-11.1 P-16ESect-11.1 P-17ESect-11.1 P-18ESect-11.1 P-19ESect-11.1 P-20ESect-11.1 P-21ESect-11.1 P-22ESect-11.1 P-23ESect-11.1 P-24ESect-11.1 P-25ESect-11.1 P-26ESect-11.1 P-27ESect-11.1 P-28ESect-11.1 P-29ESect-11.1 P-30ESect-11.1 P-31ESect-11.1 P-32ESect-11.1 P-33ESect-11.1 P-34ESect-11.1 P-35ESect-11.1 P-36ESect-11.1 P-37ESect-11.1 P-38ESect-11.1 P-39ESect-11.1 P-40ESect-11.1 P-41ESect-11.1 P-42ESect-11.1 P-43ESect-11.1 P-44ESect-11.1 P-45ESect-11.1 P-46ESect-11.1 P-47ESect-11.1 P-48ESect-11.1 P-49ESect-11.1 P-50ESect-11.1 P-51ESect-11.1 P-52ESect-11.2 P-1CPSect-11.2 P-2CPSect-11.2 P-3CPSect-11.2 P-4CPSect-11.2 P-1ESect-11.2 P-2ESect-11.2 P-3ESect-11.2 P-4ESect-11.2 P-5ESect-11.2 P-6ESect-11.2 P-7ESect-11.2 P-8ESect-11.2 P-9ESect-11.2 P-10ESect-11.2 P-11ESect-11.2 P-12ESect-11.2 P-13ESect-11.2 P-14ESect-11.2 P-15ESect-11.2 P-16ESect-11.2 P-17ESect-11.2 P-18ESect-11.2 P-19ESect-11.2 P-20ESect-11.2 P-21ESect-11.2 P-22ESect-11.2 P-23ESect-11.2 P-24ESect-11.2 P-25ESect-11.2 P-26ESect-11.2 P-27ESect-11.2 P-28ESect-11.2 P-29ESect-11.2 P-30ESect-11.2 P-31ESect-11.2 P-32ESect-11.2 P-33ESect-11.2 P-34ESect-11.2 P-35ESect-11.2 P-36ESect-11.2 P-37ESect-11.2 P-38ESect-11.2 P-39ESect-11.2 P-40ESect-11.2 P-41ESect-11.2 P-42ESect-11.2 P-43ESect-11.2 P-44ESect-11.2 P-45ESect-11.2 P-46ESect-11.2 P-47ESect-11.2 P-48ESect-11.2 P-49ESect-11.2 P-50ESect-11.2 P-51ESect-11.2 P-52ESect-11.2 P-55ESect-11.2 P-56ESect-11.2 P-58ESect-11.2 P-59ESect-11.2 P-60ESect-11.2 P-61ESect-11.2 P-62ESect-11.2 P-66ESect-11.3 P-1CPSect-11.3 P-2CPSect-11.3 P-1ESect-11.3 P-2ESect-11.3 P-3ESect-11.3 P-4ESect-11.3 P-5ESect-11.3 P-6ESect-11.3 P-7ESect-11.3 P-8ESect-11.3 P-9ESect-11.3 P-10ESect-11.3 P-11ESect-11.3 P-12ESect-11.3 P-13ESect-11.3 P-14ESect-11.3 P-15ESect-11.3 P-16ESect-11.3 P-17ESect-11.3 P-18ESect-11.3 P-19ESect-11.3 P-20ESect-11.3 P-21ESect-11.3 P-22ESect-11.3 P-23ESect-11.3 P-24ESect-11.3 P-25ESect-11.3 P-26ESect-11.3 P-27ESect-11.3 P-28ESect-11.3 P-29ESect-11.3 P-30ESect-11.3 P-31ESect-11.3 P-32ESect-11.3 P-33ESect-11.3 P-34ESect-11.3 P-35ESect-11.3 P-36ESect-11.3 P-37ESect-11.3 P-38ESect-11.3 P-39ESect-11.3 P-40ESect-11.3 P-41ESect-11.3 P-42ESect-11.3 P-43ESect-11.3 P-44ESect-11.3 P-45ESect-11.3 P-46ESect-11.3 P-47ESect-11.3 P-48ESect-11.3 P-49ESect-11.3 P-50ESect-11.3 P-51ESect-11.3 P-52ESect-11.3 P-53ESect-11.3 P-54ESect-11.3 P-55ESect-11.3 P-56ESect-11.3 P-57ESect-11.3 P-58ESect-11.3 P-59ESect-11.3 P-60ESect-11.3 P-61ESect-11.3 P-62ESect-11.3 P-63ESect-11.4 P-1CPSect-11.4 P-2CPSect-11.4 P-3CPSect-11.4 P-1ESect-11.4 P-2ESect-11.4 P-3ESect-11.4 P-4ESect-11.4 P-5ESect-11.4 P-6ESect-11.4 P-7ESect-11.4 P-8ESect-11.4 P-9ESect-11.4 P-10ESect-11.4 P-11ESect-11.4 P-12ESect-11.4 P-13ESect-11.4 P-14ESect-11.4 P-15ESect-11.4 P-16ESect-11.4 P-17ESect-11.4 P-18ESect-11.4 P-19ESect-11.4 P-20ESect-11.4 P-21ESect-11.4 P-22ESect-11.4 P-23ESect-11.4 P-24ESect-11.4 P-25ESect-11.4 P-26ESect-11.4 P-27ESect-11.4 P-28ESect-11.4 P-29ESect-11.4 P-30ESect-11.4 P-31ESect-11.4 P-32ESect-11.4 P-33ESect-11.4 P-34ESect-11.4 P-35ESect-11.4 P-36ESect-11.4 P-37ESect-11.4 P-38ESect-11.4 P-39ESect-11.5 P-1CPSect-11.5 P-2CPSect-11.5 P-3CPSect-11.5 P-4CPSect-11.5 P-1ESect-11.5 P-2ESect-11.5 P-3ESect-11.5 P-4ESect-11.5 P-5ESect-11.5 P-6ESect-11.5 P-7ESect-11.5 P-8ESect-11.5 P-9ESect-11.5 P-10ESect-11.5 P-11ESect-11.5 P-12ESect-11.5 P-15ESect-11.5 P-16ESect-11.5 P-17ESect-11.5 P-18ESect-11.5 P-19ESect-11.5 P-20ESect-11.5 P-21ESect-11.5 P-22ESect-11.5 P-23ESect-11.5 P-24ECh-11 P-1RECh-11 P-2RECh-11 P-3RECh-11 P-4RECh-11 P-5RECh-11 P-6RECh-11 P-7RECh-11 P-8RECh-11 P-9RECh-11 P-10RECh-11 P-11RECh-11 P-12RECh-11 P-13RECh-11 P-14RECh-11 P-15RECh-11 P-16RECh-11 P-17RECh-11 P-18RECh-11 P-19RECh-11 P-20RECh-11 P-21RECh-11 P-22RECh-11 P-23RECh-11 P-24RECh-11 P-25RECh-11 P-26RECh-11 P-27RECh-11 P-28RECh-11 P-29RECh-11 P-30RECh-11 P-31RECh-11 P-32RECh-11 P-33RECh-11 P-34RECh-11 P-38RECh-11 P-39RECh-11 P-40RECh-11 P-41RECh-11 P-35RECh-11 P-36RECh-11 P-37RECh-11 P-1TCh-11 P-2TCh-11 P-3TCh-11 P-4TCh-11 P-5TCh-11 P-6TCh-11 P-7TCh-11 P-8TCh-11 P-9TCh-11 P-10TCh-11 P-11TCh-11 P-12TCh-11 P-13TCh-11 P-14TCh-11 P-15TCh-11 P-16TCh-11 P-17TCh-11 P-19T

Additional Math Solutions

Find more solutions based on key concepts

Show solutions add

, determine whether the statement is true or false. If it is true, explain why it is true. If it is false, give...

Applied Calculus for the Managerial, Life, and Social Sciences: A Brief Approach

Draw, in standard position, the angle whose measure is given. 20. 73rad

Single Variable Calculus: Early Transcendentals, Volume I

25-42 Differentiate the function. f(x)=x5+5x

Calculus (MindTap Course List)

Calculate y'. 26. y=sinx

Single Variable Calculus: Early Transcendentals

For y = ln(3x2 + 1), y= a) 13x2+1 b) 6x c) 63x2+1 d) 16x

Study Guide for Stewart's Single Variable Calculus: Early Transcendentals, 8th

Graph each polynomial function. y=x3x

College Algebra (MindTap Course List)