In the summer of 1958 in St. Petersburg, Florida, a new sidewalk was poured near the childhood home of one of the authors. No expansion joints were supplied, and by mid-July the sidewalk had been completely destroyed by thermal expansion and had to be replaced, this time with the important addition of expansion joints! This event is modeled here. A slab of concrete 4.00 cm thick, 1.00 m long, and 1.00 m wide is poured for a sidewalk at an ambient temperature of 25.0°C and allowed to set. The slab is exposed to direct sunlight and placed in a series of such slabs without proper expansion joints, so linear expansion is prevented. (a) Using the linear expansion equation (Eq. 10.4), eliminate Δ L from the equation for compressive stress and strain (Eq. 9.3). (b) Use the expression found in part (a) to eliminate Δ T from Equation 11.3, obtaining a symbolic equation for thermal energy transfer Q. (c) Compute the mass of the concrete slab given that its density is 2.40 × 103 kg/m3. (d) Concrete has an ultimate compressive strength of 2.00 × 107 Pa, specific heat of 880 J/kg · °C, and Young’s modulus of 2.1 × 1010 Pa. How much thermal energy must be transferred to the slab to reach this compressive stress? (e) What temperature change is required? (f) If the Sun delivers 1.00 × 103 W of power to the top surface of the slab and if half the energy, on the average, is absorbed and retained, how long does it take the slab to reach the point at which it is in danger of cracking due to compressive stress?

Physics for Scientists and Engineers, Technology Update (No access codes included)
9th Edition
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Raymond A. Serway, John W. Jewett
Chapter19: Temperature
Section: Chapter Questions
Problem 19.49AP: In a chemical processing plant, a reaction chamber of fixed volume V0 is connected to a reservoir...
icon
Related questions
icon
Concept explainers
Question

In the summer of 1958 in St. Petersburg, Florida, a new sidewalk was poured near the childhood home of one of the authors. No expansion joints were supplied, and by mid-July the sidewalk had been completely destroyed by thermal expansion and had to be replaced, this time with the important addition of expansion joints! This event is modeled here.

A slab of concrete 4.00 cm thick, 1.00 m long, and 1.00 m wide is poured for a sidewalk at an ambient temperature of 25.0°C and allowed to set. The slab is exposed to direct sunlight and placed in a series of such slabs without proper expansion joints, so linear expansion is prevented. (a) Using the linear expansion equation (Eq. 10.4), eliminate Δ L from the equation for compressive stress and strain (Eq. 9.3). (b) Use the expression found in part (a) to eliminate Δ T from Equation 11.3, obtaining a symbolic equation for thermal energy transfer Q. (c) Compute the mass of the concrete slab given that its density is 2.40 × 103 kg/m3. (d) Concrete has an ultimate compressive strength of 2.00 × 107 Pa, specific heat of 880 J/kg · °C, and Young’s modulus of 2.1 × 1010 Pa. How much thermal energy must be transferred to the slab to reach this compressive stress? (e) What temperature change is required? (f) If the Sun delivers 1.00 × 103 W of power to the top surface of the slab and if half the energy, on the average, is absorbed and retained, how long does it take the slab to reach the point at which it is in danger of cracking due to compressive stress?

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 3 images

Blurred answer
Knowledge Booster
Energy transfer
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Physics for Scientists and Engineers, Technology …
Physics for Scientists and Engineers, Technology …
Physics
ISBN:
9781305116399
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Physics for Scientists and Engineers: Foundations…
Physics for Scientists and Engineers: Foundations…
Physics
ISBN:
9781133939146
Author:
Katz, Debora M.
Publisher:
Cengage Learning
Principles of Physics: A Calculus-Based Text
Principles of Physics: A Calculus-Based Text
Physics
ISBN:
9781133104261
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
College Physics
College Physics
Physics
ISBN:
9781285737027
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics Volume 2
University Physics Volume 2
Physics
ISBN:
9781938168161
Author:
OpenStax
Publisher:
OpenStax
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning