BuyFindarrow_forward

Mathematical Applications for the ...

11th Edition
Ronald J. Harshbarger + 1 other
ISBN: 9781305108042

Solutions

Chapter
Section
BuyFindarrow_forward

Mathematical Applications for the ...

11th Edition
Ronald J. Harshbarger + 1 other
ISBN: 9781305108042
Textbook Problem

In Problems 25-38, find y'.

y = log 5 x

To determine

To calculate: The value of y for the function y=log5x.

Explanation

Given Information:

The provided function is y=log5x.

Formula Used:

The change of base formula is such that, for logbM=logaMlogab, where a, b are the base of logarithm and M is any positive number.

Coefficient rule for a constant c is such that, if f(x)=cu(x), where u(x) is a differentiable function of x, then f(x)=cu(x).

If the logarithmic equation is y=lnx then its derivative is such that, dydx=1x.

Calculation:

Consider the given function y=log5x

Still sussing out bartleby?

Check out a sample textbook solution.

See a sample solution

The Solution to Your Study Problems

Bartleby provides explanations to thousands of textbook problems written by our experts, many with advanced degrees!

Get Started

Chapter 11 Solutions

Show all chapter solutions add
Sect-11.1 P-7ESect-11.1 P-8ESect-11.1 P-9ESect-11.1 P-10ESect-11.1 P-11ESect-11.1 P-12ESect-11.1 P-13ESect-11.1 P-14ESect-11.1 P-15ESect-11.1 P-16ESect-11.1 P-17ESect-11.1 P-18ESect-11.1 P-19ESect-11.1 P-20ESect-11.1 P-21ESect-11.1 P-22ESect-11.1 P-23ESect-11.1 P-24ESect-11.1 P-25ESect-11.1 P-26ESect-11.1 P-27ESect-11.1 P-28ESect-11.1 P-29ESect-11.1 P-30ESect-11.1 P-31ESect-11.1 P-32ESect-11.1 P-33ESect-11.1 P-34ESect-11.1 P-35ESect-11.1 P-36ESect-11.1 P-37ESect-11.1 P-38ESect-11.1 P-39ESect-11.1 P-40ESect-11.1 P-41ESect-11.1 P-42ESect-11.1 P-43ESect-11.1 P-44ESect-11.1 P-45ESect-11.1 P-46ESect-11.1 P-47ESect-11.1 P-48ESect-11.1 P-49ESect-11.1 P-50ESect-11.1 P-51ESect-11.1 P-52ESect-11.2 P-1CPSect-11.2 P-2CPSect-11.2 P-3CPSect-11.2 P-4CPSect-11.2 P-1ESect-11.2 P-2ESect-11.2 P-3ESect-11.2 P-4ESect-11.2 P-5ESect-11.2 P-6ESect-11.2 P-7ESect-11.2 P-8ESect-11.2 P-9ESect-11.2 P-10ESect-11.2 P-11ESect-11.2 P-12ESect-11.2 P-13ESect-11.2 P-14ESect-11.2 P-15ESect-11.2 P-16ESect-11.2 P-17ESect-11.2 P-18ESect-11.2 P-19ESect-11.2 P-20ESect-11.2 P-21ESect-11.2 P-22ESect-11.2 P-23ESect-11.2 P-24ESect-11.2 P-25ESect-11.2 P-26ESect-11.2 P-27ESect-11.2 P-28ESect-11.2 P-29ESect-11.2 P-30ESect-11.2 P-31ESect-11.2 P-32ESect-11.2 P-33ESect-11.2 P-34ESect-11.2 P-35ESect-11.2 P-36ESect-11.2 P-37ESect-11.2 P-38ESect-11.2 P-39ESect-11.2 P-40ESect-11.2 P-41ESect-11.2 P-42ESect-11.2 P-43ESect-11.2 P-44ESect-11.2 P-45ESect-11.2 P-46ESect-11.2 P-47ESect-11.2 P-48ESect-11.2 P-49ESect-11.2 P-50ESect-11.2 P-51ESect-11.2 P-52ESect-11.2 P-55ESect-11.2 P-56ESect-11.2 P-58ESect-11.2 P-59ESect-11.2 P-60ESect-11.2 P-61ESect-11.2 P-62ESect-11.2 P-66ESect-11.3 P-1CPSect-11.3 P-2CPSect-11.3 P-1ESect-11.3 P-2ESect-11.3 P-3ESect-11.3 P-4ESect-11.3 P-5ESect-11.3 P-6ESect-11.3 P-7ESect-11.3 P-8ESect-11.3 P-9ESect-11.3 P-10ESect-11.3 P-11ESect-11.3 P-12ESect-11.3 P-13ESect-11.3 P-14ESect-11.3 P-15ESect-11.3 P-16ESect-11.3 P-17ESect-11.3 P-18ESect-11.3 P-19ESect-11.3 P-20ESect-11.3 P-21ESect-11.3 P-22ESect-11.3 P-23ESect-11.3 P-24ESect-11.3 P-25ESect-11.3 P-26ESect-11.3 P-27ESect-11.3 P-28ESect-11.3 P-29ESect-11.3 P-30ESect-11.3 P-31ESect-11.3 P-32ESect-11.3 P-33ESect-11.3 P-34ESect-11.3 P-35ESect-11.3 P-36ESect-11.3 P-37ESect-11.3 P-38ESect-11.3 P-39ESect-11.3 P-40ESect-11.3 P-41ESect-11.3 P-42ESect-11.3 P-43ESect-11.3 P-44ESect-11.3 P-45ESect-11.3 P-46ESect-11.3 P-47ESect-11.3 P-48ESect-11.3 P-49ESect-11.3 P-50ESect-11.3 P-51ESect-11.3 P-52ESect-11.3 P-53ESect-11.3 P-54ESect-11.3 P-55ESect-11.3 P-56ESect-11.3 P-57ESect-11.3 P-58ESect-11.3 P-59ESect-11.3 P-60ESect-11.3 P-61ESect-11.3 P-62ESect-11.3 P-63ESect-11.4 P-1CPSect-11.4 P-2CPSect-11.4 P-3CPSect-11.4 P-1ESect-11.4 P-2ESect-11.4 P-3ESect-11.4 P-4ESect-11.4 P-5ESect-11.4 P-6ESect-11.4 P-7ESect-11.4 P-8ESect-11.4 P-9ESect-11.4 P-10ESect-11.4 P-11ESect-11.4 P-12ESect-11.4 P-13ESect-11.4 P-14ESect-11.4 P-15ESect-11.4 P-16ESect-11.4 P-17ESect-11.4 P-18ESect-11.4 P-19ESect-11.4 P-20ESect-11.4 P-21ESect-11.4 P-22ESect-11.4 P-23ESect-11.4 P-24ESect-11.4 P-25ESect-11.4 P-26ESect-11.4 P-27ESect-11.4 P-28ESect-11.4 P-29ESect-11.4 P-30ESect-11.4 P-31ESect-11.4 P-32ESect-11.4 P-33ESect-11.4 P-34ESect-11.4 P-35ESect-11.4 P-36ESect-11.4 P-37ESect-11.4 P-38ESect-11.4 P-39ESect-11.5 P-1CPSect-11.5 P-2CPSect-11.5 P-3CPSect-11.5 P-4CPSect-11.5 P-1ESect-11.5 P-2ESect-11.5 P-3ESect-11.5 P-4ESect-11.5 P-5ESect-11.5 P-6ESect-11.5 P-7ESect-11.5 P-8ESect-11.5 P-9ESect-11.5 P-10ESect-11.5 P-11ESect-11.5 P-12ESect-11.5 P-15ESect-11.5 P-16ESect-11.5 P-17ESect-11.5 P-18ESect-11.5 P-19ESect-11.5 P-20ESect-11.5 P-21ESect-11.5 P-22ESect-11.5 P-23ESect-11.5 P-24ECh-11 P-1RECh-11 P-2RECh-11 P-3RECh-11 P-4RECh-11 P-5RECh-11 P-6RECh-11 P-7RECh-11 P-8RECh-11 P-9RECh-11 P-10RECh-11 P-11RECh-11 P-12RECh-11 P-13RECh-11 P-14RECh-11 P-15RECh-11 P-16RECh-11 P-17RECh-11 P-18RECh-11 P-19RECh-11 P-20RECh-11 P-21RECh-11 P-22RECh-11 P-23RECh-11 P-24RECh-11 P-25RECh-11 P-26RECh-11 P-27RECh-11 P-28RECh-11 P-29RECh-11 P-30RECh-11 P-31RECh-11 P-32RECh-11 P-33RECh-11 P-34RECh-11 P-38RECh-11 P-39RECh-11 P-40RECh-11 P-41RECh-11 P-35RECh-11 P-36RECh-11 P-37RECh-11 P-1TCh-11 P-2TCh-11 P-3TCh-11 P-4TCh-11 P-5TCh-11 P-6TCh-11 P-7TCh-11 P-8TCh-11 P-9TCh-11 P-10TCh-11 P-11TCh-11 P-12TCh-11 P-13TCh-11 P-14TCh-11 P-15TCh-11 P-16TCh-11 P-17TCh-11 P-19T

Additional Math Solutions

Find more solutions based on key concepts

Show solutions add

In Exercises 5-10, solve for y in terms of x. y(5)=1[ x(2) ]

Calculus: An Applied Approach (MindTap Course List)

Use continuity to evaluate the limit. limx2x20x2

Single Variable Calculus: Early Transcendentals, Volume I

In Exercises 14. find the values of x that satisfy the inequality (inequalities). 3. x 3 2 or x + 3 1

Applied Calculus for the Managerial, Life, and Social Sciences: A Brief Approach

Simplify: 912

Elementary Technical Mathematics

Prove each identity. 11sint+11+sint=2sec2t

Trigonometry (MindTap Course List)

Show that the triangle with vertices A(1,1), B(5,3), and C(4,5) is a right triangle.

Finite Mathematics for the Managerial, Life, and Social Sciences

The general solution to (for x, y > 0) is: a) y = ln x + C b) c) y = ln(ln x + C) d)

Study Guide for Stewart's Single Variable Calculus: Early Transcendentals, 8th