BuyFindarrow_forward

Discrete Mathematics With Applicat...

5th Edition
EPP + 1 other
ISBN: 9781337694193

Solutions

Chapter
Section
BuyFindarrow_forward

Discrete Mathematics With Applicat...

5th Edition
EPP + 1 other
ISBN: 9781337694193
Textbook Problem
1 views

Prove Theorem 11.2.7(b): If f and g are real-valued functions defined on the same set of nonnegative integers and if f ( n ) 0 and g ( n ) 0 for every integer n r . where r is a positive real number, then if f ( n ) is Θ ( g ( n ) ) . then g ( n ) is Θ ( f ( n ) ) .

To determine

To prove:

If f(n) is Θg(n), then g(n) is Θf(n) when f and g are real-valued functions defined on the same non-negative integers.

Explanation

Given information:

f and g are real-valued functions defined on same non-negative integers and f(n)0,g(n)0 for all nr and r is any real number greater than zero.

Formula used:

Let f and g be real valued functions defined on the same nonnegative integers, with g(n)0 for every integer nr, where r is positive real number.

Then,

f is of order g, written f(n) is Θ(g(n)), if and only if, there exist positive real numbers A,B and kr such that

Ag(n)f(n)Bg(n) for every integer nk.

Proof:

If f(n) is Θg(n), according to the definition of the Θ notation, there exist A,Bandk positive real numbers with

Still sussing out bartleby?

Check out a sample textbook solution.

See a sample solution

The Solution to Your Study Problems

Bartleby provides explanations to thousands of textbook problems written by our experts, many with advanced degrees!

Get Started

Chapter 11 Solutions

Show all chapter solutions add
Sect-11.1 P-5ESSect-11.1 P-6ESSect-11.1 P-7ESSect-11.1 P-8ESSect-11.1 P-9ESSect-11.1 P-10ESSect-11.1 P-11ESSect-11.1 P-12ESSect-11.1 P-13ESSect-11.1 P-14ESSect-11.1 P-15ESSect-11.1 P-16ESSect-11.1 P-17ESSect-11.1 P-18ESSect-11.1 P-19ESSect-11.1 P-20ESSect-11.1 P-21ESSect-11.1 P-22ESSect-11.1 P-23ESSect-11.1 P-24ESSect-11.1 P-25ESSect-11.1 P-26ESSect-11.1 P-27ESSect-11.1 P-28ESSect-11.2 P-1TYSect-11.2 P-2TYSect-11.2 P-3TYSect-11.2 P-4TYSect-11.2 P-5TYSect-11.2 P-6TYSect-11.2 P-1ESSect-11.2 P-2ESSect-11.2 P-3ESSect-11.2 P-4ESSect-11.2 P-5ESSect-11.2 P-6ESSect-11.2 P-7ESSect-11.2 P-8ESSect-11.2 P-9ESSect-11.2 P-10ESSect-11.2 P-11ESSect-11.2 P-12ESSect-11.2 P-13ESSect-11.2 P-14ESSect-11.2 P-15ESSect-11.2 P-16ESSect-11.2 P-17ESSect-11.2 P-18ESSect-11.2 P-19ESSect-11.2 P-20ESSect-11.2 P-21ESSect-11.2 P-22ESSect-11.2 P-23ESSect-11.2 P-24ESSect-11.2 P-25ESSect-11.2 P-26ESSect-11.2 P-27ESSect-11.2 P-28ESSect-11.2 P-29ESSect-11.2 P-30ESSect-11.2 P-31ESSect-11.2 P-32ESSect-11.2 P-33ESSect-11.2 P-34ESSect-11.2 P-35ESSect-11.2 P-36ESSect-11.2 P-37ESSect-11.2 P-38ESSect-11.2 P-39ESSect-11.2 P-40ESSect-11.2 P-41ESSect-11.2 P-42ESSect-11.2 P-43ESSect-11.2 P-44ESSect-11.2 P-45ESSect-11.2 P-46ESSect-11.2 P-47ESSect-11.2 P-48ESSect-11.2 P-49ESSect-11.2 P-50ESSect-11.2 P-51ESSect-11.3 P-1TYSect-11.3 P-2TYSect-11.3 P-3TYSect-11.3 P-1ESSect-11.3 P-2ESSect-11.3 P-3ESSect-11.3 P-4ESSect-11.3 P-5ESSect-11.3 P-6ESSect-11.3 P-7ESSect-11.3 P-8ESSect-11.3 P-9ESSect-11.3 P-10ESSect-11.3 P-11ESSect-11.3 P-12ESSect-11.3 P-13ESSect-11.3 P-14ESSect-11.3 P-15ESSect-11.3 P-16ESSect-11.3 P-17ESSect-11.3 P-18ESSect-11.3 P-19ESSect-11.3 P-20ESSect-11.3 P-21ESSect-11.3 P-22ESSect-11.3 P-23ESSect-11.3 P-24ESSect-11.3 P-25ESSect-11.3 P-26ESSect-11.3 P-27ESSect-11.3 P-28ESSect-11.3 P-29ESSect-11.3 P-30ESSect-11.3 P-31ESSect-11.3 P-32ESSect-11.3 P-33ESSect-11.3 P-34ESSect-11.3 P-35ESSect-11.3 P-36ESSect-11.3 P-37ESSect-11.3 P-38ESSect-11.3 P-39ESSect-11.3 P-40ESSect-11.3 P-41ESSect-11.3 P-42ESSect-11.3 P-43ESSect-11.4 P-1TYSect-11.4 P-2TYSect-11.4 P-3TYSect-11.4 P-4TYSect-11.4 P-5TYSect-11.4 P-1ESSect-11.4 P-2ESSect-11.4 P-3ESSect-11.4 P-4ESSect-11.4 P-5ESSect-11.4 P-6ESSect-11.4 P-7ESSect-11.4 P-8ESSect-11.4 P-9ESSect-11.4 P-10ESSect-11.4 P-11ESSect-11.4 P-12ESSect-11.4 P-13ESSect-11.4 P-14ESSect-11.4 P-15ESSect-11.4 P-16ESSect-11.4 P-17ESSect-11.4 P-18ESSect-11.4 P-19ESSect-11.4 P-20ESSect-11.4 P-21ESSect-11.4 P-22ESSect-11.4 P-23ESSect-11.4 P-24ESSect-11.4 P-25ESSect-11.4 P-26ESSect-11.4 P-27ESSect-11.4 P-28ESSect-11.4 P-29ESSect-11.4 P-30ESSect-11.4 P-31ESSect-11.4 P-32ESSect-11.4 P-33ESSect-11.4 P-34ESSect-11.4 P-35ESSect-11.4 P-36ESSect-11.4 P-37ESSect-11.4 P-38ESSect-11.4 P-39ESSect-11.4 P-40ESSect-11.4 P-41ESSect-11.4 P-42ESSect-11.4 P-43ESSect-11.4 P-44ESSect-11.4 P-45ESSect-11.4 P-46ESSect-11.4 P-47ESSect-11.4 P-48ESSect-11.4 P-49ESSect-11.4 P-50ESSect-11.4 P-51ESSect-11.5 P-1TYSect-11.5 P-2TYSect-11.5 P-3TYSect-11.5 P-4TYSect-11.5 P-5TYSect-11.5 P-1ESSect-11.5 P-2ESSect-11.5 P-3ESSect-11.5 P-4ESSect-11.5 P-5ESSect-11.5 P-6ESSect-11.5 P-7ESSect-11.5 P-8ESSect-11.5 P-9ESSect-11.5 P-10ESSect-11.5 P-11ESSect-11.5 P-12ESSect-11.5 P-13ESSect-11.5 P-14ESSect-11.5 P-15ESSect-11.5 P-16ESSect-11.5 P-17ESSect-11.5 P-18ESSect-11.5 P-19ESSect-11.5 P-20ESSect-11.5 P-21ESSect-11.5 P-22ESSect-11.5 P-23ESSect-11.5 P-24ESSect-11.5 P-25ESSect-11.5 P-26ES