BuyFindarrow_forward

Discrete Mathematics With Applicat...

5th Edition
EPP + 1 other
ISBN: 9781337694193

Solutions

Chapter
Section
BuyFindarrow_forward

Discrete Mathematics With Applicat...

5th Edition
EPP + 1 other
ISBN: 9781337694193
Textbook Problem
1 views

Prove Theorem 11.2.6(b): If f and g are real-valued functions defined on the same set of nonnegative integers, and if there is a positive real number r such that f ( n ) 0 and g ( n ) 0 for every integer n r, and if g ( n ) is O ( f ( n ) ) , then f ( n ) is Ω ( g ( n ) ) .

To determine

To prove:

That for f and g real valued functions defined on same set of non-negative integers, if g(n) is O(f(n)), then f(n) is Ω(g(n)).

Explanation

Given information:

The functions f and g are defined on same set of non-negative integers and for every nr, f(n)0 and g(n)0 where r is a positive real number.

Formula used:

Let f and g be real valued functions defined on the same nonnegative integers, with g(n)0 for every integer nr, where r is positive real number.

Then,

  1. f is of order at least g, written f(n) is Ω(g(n)), if and only if, there exist positive real number A and ar such that
  2. Ag(n)f(n) for every integer na.

  3. f is of order at most g, written f(n) is O(g(n)), if and only if, there exist positive real number B and br such that
  4. 0f(n)Bg(n) for every integer nb

Still sussing out bartleby?

Check out a sample textbook solution.

See a sample solution

The Solution to Your Study Problems

Bartleby provides explanations to thousands of textbook problems written by our experts, many with advanced degrees!

Get Started

Chapter 11 Solutions

Show all chapter solutions add
Sect-11.1 P-5ESSect-11.1 P-6ESSect-11.1 P-7ESSect-11.1 P-8ESSect-11.1 P-9ESSect-11.1 P-10ESSect-11.1 P-11ESSect-11.1 P-12ESSect-11.1 P-13ESSect-11.1 P-14ESSect-11.1 P-15ESSect-11.1 P-16ESSect-11.1 P-17ESSect-11.1 P-18ESSect-11.1 P-19ESSect-11.1 P-20ESSect-11.1 P-21ESSect-11.1 P-22ESSect-11.1 P-23ESSect-11.1 P-24ESSect-11.1 P-25ESSect-11.1 P-26ESSect-11.1 P-27ESSect-11.1 P-28ESSect-11.2 P-1TYSect-11.2 P-2TYSect-11.2 P-3TYSect-11.2 P-4TYSect-11.2 P-5TYSect-11.2 P-6TYSect-11.2 P-1ESSect-11.2 P-2ESSect-11.2 P-3ESSect-11.2 P-4ESSect-11.2 P-5ESSect-11.2 P-6ESSect-11.2 P-7ESSect-11.2 P-8ESSect-11.2 P-9ESSect-11.2 P-10ESSect-11.2 P-11ESSect-11.2 P-12ESSect-11.2 P-13ESSect-11.2 P-14ESSect-11.2 P-15ESSect-11.2 P-16ESSect-11.2 P-17ESSect-11.2 P-18ESSect-11.2 P-19ESSect-11.2 P-20ESSect-11.2 P-21ESSect-11.2 P-22ESSect-11.2 P-23ESSect-11.2 P-24ESSect-11.2 P-25ESSect-11.2 P-26ESSect-11.2 P-27ESSect-11.2 P-28ESSect-11.2 P-29ESSect-11.2 P-30ESSect-11.2 P-31ESSect-11.2 P-32ESSect-11.2 P-33ESSect-11.2 P-34ESSect-11.2 P-35ESSect-11.2 P-36ESSect-11.2 P-37ESSect-11.2 P-38ESSect-11.2 P-39ESSect-11.2 P-40ESSect-11.2 P-41ESSect-11.2 P-42ESSect-11.2 P-43ESSect-11.2 P-44ESSect-11.2 P-45ESSect-11.2 P-46ESSect-11.2 P-47ESSect-11.2 P-48ESSect-11.2 P-49ESSect-11.2 P-50ESSect-11.2 P-51ESSect-11.3 P-1TYSect-11.3 P-2TYSect-11.3 P-3TYSect-11.3 P-1ESSect-11.3 P-2ESSect-11.3 P-3ESSect-11.3 P-4ESSect-11.3 P-5ESSect-11.3 P-6ESSect-11.3 P-7ESSect-11.3 P-8ESSect-11.3 P-9ESSect-11.3 P-10ESSect-11.3 P-11ESSect-11.3 P-12ESSect-11.3 P-13ESSect-11.3 P-14ESSect-11.3 P-15ESSect-11.3 P-16ESSect-11.3 P-17ESSect-11.3 P-18ESSect-11.3 P-19ESSect-11.3 P-20ESSect-11.3 P-21ESSect-11.3 P-22ESSect-11.3 P-23ESSect-11.3 P-24ESSect-11.3 P-25ESSect-11.3 P-26ESSect-11.3 P-27ESSect-11.3 P-28ESSect-11.3 P-29ESSect-11.3 P-30ESSect-11.3 P-31ESSect-11.3 P-32ESSect-11.3 P-33ESSect-11.3 P-34ESSect-11.3 P-35ESSect-11.3 P-36ESSect-11.3 P-37ESSect-11.3 P-38ESSect-11.3 P-39ESSect-11.3 P-40ESSect-11.3 P-41ESSect-11.3 P-42ESSect-11.3 P-43ESSect-11.4 P-1TYSect-11.4 P-2TYSect-11.4 P-3TYSect-11.4 P-4TYSect-11.4 P-5TYSect-11.4 P-1ESSect-11.4 P-2ESSect-11.4 P-3ESSect-11.4 P-4ESSect-11.4 P-5ESSect-11.4 P-6ESSect-11.4 P-7ESSect-11.4 P-8ESSect-11.4 P-9ESSect-11.4 P-10ESSect-11.4 P-11ESSect-11.4 P-12ESSect-11.4 P-13ESSect-11.4 P-14ESSect-11.4 P-15ESSect-11.4 P-16ESSect-11.4 P-17ESSect-11.4 P-18ESSect-11.4 P-19ESSect-11.4 P-20ESSect-11.4 P-21ESSect-11.4 P-22ESSect-11.4 P-23ESSect-11.4 P-24ESSect-11.4 P-25ESSect-11.4 P-26ESSect-11.4 P-27ESSect-11.4 P-28ESSect-11.4 P-29ESSect-11.4 P-30ESSect-11.4 P-31ESSect-11.4 P-32ESSect-11.4 P-33ESSect-11.4 P-34ESSect-11.4 P-35ESSect-11.4 P-36ESSect-11.4 P-37ESSect-11.4 P-38ESSect-11.4 P-39ESSect-11.4 P-40ESSect-11.4 P-41ESSect-11.4 P-42ESSect-11.4 P-43ESSect-11.4 P-44ESSect-11.4 P-45ESSect-11.4 P-46ESSect-11.4 P-47ESSect-11.4 P-48ESSect-11.4 P-49ESSect-11.4 P-50ESSect-11.4 P-51ESSect-11.5 P-1TYSect-11.5 P-2TYSect-11.5 P-3TYSect-11.5 P-4TYSect-11.5 P-5TYSect-11.5 P-1ESSect-11.5 P-2ESSect-11.5 P-3ESSect-11.5 P-4ESSect-11.5 P-5ESSect-11.5 P-6ESSect-11.5 P-7ESSect-11.5 P-8ESSect-11.5 P-9ESSect-11.5 P-10ESSect-11.5 P-11ESSect-11.5 P-12ESSect-11.5 P-13ESSect-11.5 P-14ESSect-11.5 P-15ESSect-11.5 P-16ESSect-11.5 P-17ESSect-11.5 P-18ESSect-11.5 P-19ESSect-11.5 P-20ESSect-11.5 P-21ESSect-11.5 P-22ESSect-11.5 P-23ESSect-11.5 P-24ESSect-11.5 P-25ESSect-11.5 P-26ES