BuyFindarrow_forward

Discrete Mathematics With Applicat...

5th Edition
EPP + 1 other
ISBN: 9781337694193

Solutions

Chapter
Section
BuyFindarrow_forward

Discrete Mathematics With Applicat...

5th Edition
EPP + 1 other
ISBN: 9781337694193
Textbook Problem
1 views

Prove Theorem 11.2.8:
a. Let f and g be real-valued functions defined on the same set of nonnegative integers, and suppose there is a positive real number r such that f ( n ) 0 and g ( n ) > 0 for every integer n r . If f ( n ) is Ω ( g ( n ) ) and c is any positive real number, then c f ( n ) is Ω ( g ( n ) ) .

b. Let f and g be real-valued functions defined on the same set of nonnegative integers, and suppose there is a positive real number r such that f ( n ) 0 and g ( n ) 0 for every integer n r . If f ( n ) is O ( g ( n ) ) and c is any positive real number, then c f ( n ) is O ( g ( n ) ) .

c. Let f and g be real-valued functions defined on the same set of nonnegative integers, and suppose there is a positive real number r such that f ( n ) 0 and g ( n ) 0 for every integer n r . If f ( n ) is Θ ( g ( n ) ) and c is any positive real number, then c f ( n ) is Θ ( g ( n ) ) .

To determine

(a)

To prove:

That for the real-valued function f and g, if f(n) is Ω(g(n)), then cf(n) is Ω(g(n)) for any real number c.

Explanation

Given information:

The functions f and g are defined on same set of non-negative integers and for every nr, f(n)0 and g(n)0 where r is a positive real number. Also c is any positive real number.

Formula used:

Let f and g be real valued functions defined on the same nonnegative integers, with g(n)0 for every integer nr, where r is positive real number.

Then,

f is of order at least g, written f(n) is Ω(g(n)), if and only if, there exist positive real number A and ar such that

Ag(n)f(n) for every integer na.

Proof:

Using the definition of Ω notation,

there exists a real number A0 such that Ag(n)f(n) for every nr

To determine

(b)

To prove:

That for the real-valued function f and g, if f(n) is O(g(n)), then cf(n) is O(g(n)) for any real number c.

To determine

(c)

To prove:

That for the real-valued function f and g, if f(n) is θ(g(n)), then cf(n) is θ(g(n)) for any real number c.

Still sussing out bartleby?

Check out a sample textbook solution.

See a sample solution

The Solution to Your Study Problems

Bartleby provides explanations to thousands of textbook problems written by our experts, many with advanced degrees!

Get Started

Chapter 11 Solutions

Show all chapter solutions add
Sect-11.1 P-5ESSect-11.1 P-6ESSect-11.1 P-7ESSect-11.1 P-8ESSect-11.1 P-9ESSect-11.1 P-10ESSect-11.1 P-11ESSect-11.1 P-12ESSect-11.1 P-13ESSect-11.1 P-14ESSect-11.1 P-15ESSect-11.1 P-16ESSect-11.1 P-17ESSect-11.1 P-18ESSect-11.1 P-19ESSect-11.1 P-20ESSect-11.1 P-21ESSect-11.1 P-22ESSect-11.1 P-23ESSect-11.1 P-24ESSect-11.1 P-25ESSect-11.1 P-26ESSect-11.1 P-27ESSect-11.1 P-28ESSect-11.2 P-1TYSect-11.2 P-2TYSect-11.2 P-3TYSect-11.2 P-4TYSect-11.2 P-5TYSect-11.2 P-6TYSect-11.2 P-1ESSect-11.2 P-2ESSect-11.2 P-3ESSect-11.2 P-4ESSect-11.2 P-5ESSect-11.2 P-6ESSect-11.2 P-7ESSect-11.2 P-8ESSect-11.2 P-9ESSect-11.2 P-10ESSect-11.2 P-11ESSect-11.2 P-12ESSect-11.2 P-13ESSect-11.2 P-14ESSect-11.2 P-15ESSect-11.2 P-16ESSect-11.2 P-17ESSect-11.2 P-18ESSect-11.2 P-19ESSect-11.2 P-20ESSect-11.2 P-21ESSect-11.2 P-22ESSect-11.2 P-23ESSect-11.2 P-24ESSect-11.2 P-25ESSect-11.2 P-26ESSect-11.2 P-27ESSect-11.2 P-28ESSect-11.2 P-29ESSect-11.2 P-30ESSect-11.2 P-31ESSect-11.2 P-32ESSect-11.2 P-33ESSect-11.2 P-34ESSect-11.2 P-35ESSect-11.2 P-36ESSect-11.2 P-37ESSect-11.2 P-38ESSect-11.2 P-39ESSect-11.2 P-40ESSect-11.2 P-41ESSect-11.2 P-42ESSect-11.2 P-43ESSect-11.2 P-44ESSect-11.2 P-45ESSect-11.2 P-46ESSect-11.2 P-47ESSect-11.2 P-48ESSect-11.2 P-49ESSect-11.2 P-50ESSect-11.2 P-51ESSect-11.3 P-1TYSect-11.3 P-2TYSect-11.3 P-3TYSect-11.3 P-1ESSect-11.3 P-2ESSect-11.3 P-3ESSect-11.3 P-4ESSect-11.3 P-5ESSect-11.3 P-6ESSect-11.3 P-7ESSect-11.3 P-8ESSect-11.3 P-9ESSect-11.3 P-10ESSect-11.3 P-11ESSect-11.3 P-12ESSect-11.3 P-13ESSect-11.3 P-14ESSect-11.3 P-15ESSect-11.3 P-16ESSect-11.3 P-17ESSect-11.3 P-18ESSect-11.3 P-19ESSect-11.3 P-20ESSect-11.3 P-21ESSect-11.3 P-22ESSect-11.3 P-23ESSect-11.3 P-24ESSect-11.3 P-25ESSect-11.3 P-26ESSect-11.3 P-27ESSect-11.3 P-28ESSect-11.3 P-29ESSect-11.3 P-30ESSect-11.3 P-31ESSect-11.3 P-32ESSect-11.3 P-33ESSect-11.3 P-34ESSect-11.3 P-35ESSect-11.3 P-36ESSect-11.3 P-37ESSect-11.3 P-38ESSect-11.3 P-39ESSect-11.3 P-40ESSect-11.3 P-41ESSect-11.3 P-42ESSect-11.3 P-43ESSect-11.4 P-1TYSect-11.4 P-2TYSect-11.4 P-3TYSect-11.4 P-4TYSect-11.4 P-5TYSect-11.4 P-1ESSect-11.4 P-2ESSect-11.4 P-3ESSect-11.4 P-4ESSect-11.4 P-5ESSect-11.4 P-6ESSect-11.4 P-7ESSect-11.4 P-8ESSect-11.4 P-9ESSect-11.4 P-10ESSect-11.4 P-11ESSect-11.4 P-12ESSect-11.4 P-13ESSect-11.4 P-14ESSect-11.4 P-15ESSect-11.4 P-16ESSect-11.4 P-17ESSect-11.4 P-18ESSect-11.4 P-19ESSect-11.4 P-20ESSect-11.4 P-21ESSect-11.4 P-22ESSect-11.4 P-23ESSect-11.4 P-24ESSect-11.4 P-25ESSect-11.4 P-26ESSect-11.4 P-27ESSect-11.4 P-28ESSect-11.4 P-29ESSect-11.4 P-30ESSect-11.4 P-31ESSect-11.4 P-32ESSect-11.4 P-33ESSect-11.4 P-34ESSect-11.4 P-35ESSect-11.4 P-36ESSect-11.4 P-37ESSect-11.4 P-38ESSect-11.4 P-39ESSect-11.4 P-40ESSect-11.4 P-41ESSect-11.4 P-42ESSect-11.4 P-43ESSect-11.4 P-44ESSect-11.4 P-45ESSect-11.4 P-46ESSect-11.4 P-47ESSect-11.4 P-48ESSect-11.4 P-49ESSect-11.4 P-50ESSect-11.4 P-51ESSect-11.5 P-1TYSect-11.5 P-2TYSect-11.5 P-3TYSect-11.5 P-4TYSect-11.5 P-5TYSect-11.5 P-1ESSect-11.5 P-2ESSect-11.5 P-3ESSect-11.5 P-4ESSect-11.5 P-5ESSect-11.5 P-6ESSect-11.5 P-7ESSect-11.5 P-8ESSect-11.5 P-9ESSect-11.5 P-10ESSect-11.5 P-11ESSect-11.5 P-12ESSect-11.5 P-13ESSect-11.5 P-14ESSect-11.5 P-15ESSect-11.5 P-16ESSect-11.5 P-17ESSect-11.5 P-18ESSect-11.5 P-19ESSect-11.5 P-20ESSect-11.5 P-21ESSect-11.5 P-22ESSect-11.5 P-23ESSect-11.5 P-24ESSect-11.5 P-25ESSect-11.5 P-26ES