Math

Discrete Mathematics With ApplicationsFor each of the algorithm segments in 6—19, assume that n is a positive integer. (a) Compute the actual number of elementary operations (additions, subtractions, multiplications, divisions, and comparisons) that are performed when the algorithm segment is executed. For simplicity, however, count only comparisons that occur within if then statements; ignore those implied by for-next loops. (b) Use the theorem on polynomial orders to find an order for the algorithm segment. 17. for i : = 1 to n for j : = 1 to ⌊ ( i + 1 ) / 2 ⌋ a : = ( n − i ) ⋅ ( n − j ) next j next iBuyFind*arrow_forward*

5th Edition

EPP + 1 other

Publisher: Cengage Learning,

ISBN: 9781337694193

Chapter 11.3, Problem 17ES

Textbook Problem

For each of the algorithm segments in 6—19, assume that *n *is a positive integer. (a) Compute the actual number of elementary operations (additions, subtractions, multiplications, divisions, and comparisons) that are performed when the algorithm segment is executed. For simplicity, however, count only comparisons that occur within if then statements; ignore those implied by for-next loops. (b) Use the theorem on polynomial orders to find an order for the algorithm segment.

17. for
*n*for
*j*next *i*

Discrete Mathematics With Applications

Show all chapter solutions

Ch. 11.1 - If f is a real-valued function of a real variable,...Ch. 11.1 - A point (x,y) lies on the graph of a real-valued...Ch. 11.1 - If a is any nonnegative real number, then the...Ch. 11.1 - Given a function f:RR and a real number M, the...Ch. 11.1 - Given a function f:RR , to prove that f is...Ch. 11.1 - Given a function f:RR , to prove that f is...Ch. 11.1 - The graph of a function f is shown below. a. Is...Ch. 11.1 - The graph of a function g is shown below. a. Is...Ch. 11.1 - Sketch the graphs of the power functions p1/3and...Ch. 11.1 - Sketch the graphs of the power functions p3 and p4...

Ch. 11.1 - Sketch the graphs of y=2x and y=2x for each real...Ch. 11.1 - Sketch a graph for each of the functions defined...Ch. 11.1 - Sketch a graph for each of the functions defined...Ch. 11.1 - Sketch a graph for each of the functions defined...Ch. 11.1 - Sketch a graph for each of the functions defined...Ch. 11.1 - In each of 10—13 a function is defined on a set of...Ch. 11.1 - In each of 10—13 a function is defined on a set of...Ch. 11.1 - In each of 10—13 a function is defined on a set of...Ch. 11.1 - In each of 10—13 a function is defined on a set of...Ch. 11.1 - The graph of a function f is shown below. Find the...Ch. 11.1 - Show that the function f:RR defined by the formula...Ch. 11.1 - Show that the function g:RR defined by the formula...Ch. 11.1 - Let h be the function from R to R defined by the...Ch. 11.1 - Let k:RR be the function defined by the formula...Ch. 11.1 - Show that if a function f:RRis increasing, then f...Ch. 11.1 - Given real-valued functions f and g with the same...Ch. 11.1 - a. Let m be any positive integer, and define...Ch. 11.1 - Let f be the function whose graph follows. Sketch...Ch. 11.1 - Let h be the function whose graph is shown below....Ch. 11.1 - Let f be a real-valued function of a real...Ch. 11.1 - Let f be a real-valued function of a real...Ch. 11.1 - Let f be a real-valued function of a real...Ch. 11.1 - In 27 and 28, functions f and g are defined. In...Ch. 11.1 - In 27 and 28, functions f and g are defined. In...Ch. 11.2 - A sentence of the form Ag(n)f(n) for every na...Ch. 11.2 - A sentence of the tirm “ 0f(n)Bg(n) for every nb ”...Ch. 11.2 - A sentence of the form “ Ag(n)f(n)Bg(n)for every...Ch. 11.2 - When n1,n n2 and n2 n5__________.Ch. 11.2 - According to the theorem on polynomial orders, if...Ch. 11.2 - If n is a positive integer, then 1+2+3++n has...Ch. 11.2 - The following is a formal definition for ...Ch. 11.2 - The following is a formal definition for...Ch. 11.2 - The following is a formal definition for ...Ch. 11.2 - In 4—9, express each statement using -, O-, or ...Ch. 11.2 - In 4—9, express each statement using -, O-, or ...Ch. 11.2 - In 4—9, express each statement using -, O-, or ...Ch. 11.2 - In 4—9, express each statement using -, O-, or ...Ch. 11.2 - In 4—9, express each statement using -, O-, or ...Ch. 11.2 - In 4—9, express each statement using -, O-, or ...Ch. 11.2 - a. Show that for any integer n1,02n2+15n+421n2 ....Ch. 11.2 - a. Show that for any integer n1,023n4+8n2+4n35n4 ....Ch. 11.2 - a. Show that for any integer n1,07n3+10n2+320n3 ....Ch. 11.2 - Use the definition of -notation to show that...Ch. 11.2 - Use the definition of -notation to show that...Ch. 11.2 - Use the definition of -notation to show that...Ch. 11.2 - Use the definition of -notation to show that...Ch. 11.2 - Use the definition of -notation to show that n2is...Ch. 11.2 - Prove Theorem 11.2.7(b): If f and g are...Ch. 11.2 - Prove Theorem 11.2.1(b): If f and g are...Ch. 11.2 - Without using Theorem 11.2.4 prove that n5 is not...Ch. 11.2 - Prove Theorem 11.2.4: If f is a real-valued...Ch. 11.2 - a. Use one of the methods of Example 11.2.4 to...Ch. 11.2 - a. Use one of the methods of Example 11.2.4 to...Ch. 11.2 - a. Use one of the methods of Example 11.2.4 to...Ch. 11.2 - Suppose P(n)=amnm+am1nm1++a2n2+a1n+a0 , where all...Ch. 11.2 - Use the theorem on polynomial orders to prove each...Ch. 11.2 - Use the theorem on polynomial orders to prove each...Ch. 11.2 - Use the theorem on polynomial orders to prove each...Ch. 11.2 - Use the theorem on polynomial orders to prove each...Ch. 11.2 - Use the theorem on polynomial orders to prove each...Ch. 11.2 - Use the theorem on polynomial orders to prove each...Ch. 11.2 - Prove each of the statements in 32—39. Use the...Ch. 11.2 - Prove each of the statements in 32—39. Use the...Ch. 11.2 - Prove each of the statements in 32—39. Use the...Ch. 11.2 - Prove each of the statements in 32—39. Use the...Ch. 11.2 - Prove each of the statements in 32—39. Use the...Ch. 11.2 - Prove each of the statements in 32—39. Use the...Ch. 11.2 - Prove each of the statements in 32—39. Use the...Ch. 11.2 - Prove each of the statements in 32—39. Use the...Ch. 11.2 - a. Prove: If c is a positive real number and if f...Ch. 11.2 - Prove: If c is a positive real number and...Ch. 11.2 - What can you say about a function f with the...Ch. 11.2 - Use Theorems 11.2.5-11.2.9 and the results of...Ch. 11.2 - Use Theorems 11.2.5-11.2.9 and the results of...Ch. 11.2 - Use Theorems 11.2.5-11.2.9 and the results of...Ch. 11.2 - a. Use mathematical induction to prove that if n...Ch. 11.2 - a. Let x be any positive real number. Use...Ch. 11.2 - Prove Theorem 11.2.6(b): If f and g are...Ch. 11.2 - Prove Theorem 11.2.7(a): If f is a real-valued...Ch. 11.2 - Prove Theorem 11.2.8: a. Let f and g be...Ch. 11.2 - Prove Theorem 11.2.9: a. Let f1,f2 , and g be...Ch. 11.3 - When an algorithm segment contains a nested...Ch. 11.3 - In the worst case for an input array of length n,...Ch. 11.3 - The worst-case order of the insertion sort...Ch. 11.3 - Suppose a computer takes 1 nanosecond ( =109...Ch. 11.3 - Suppose an algorithm requires cn2operations when...Ch. 11.3 - Suppose an algorithm requires cn3operations when...Ch. 11.3 - Exercises 4—5 explore the fact that for relatively...Ch. 11.3 - Exercises 4—5 explore the fact that for relatively...Ch. 11.3 - For each of the algorithm segments in 6—19, assume...Ch. 11.3 - For each of the algorithm segments in 6—19, assume...Ch. 11.3 - For each of the algorithm segments in 6—19, assume...Ch. 11.3 - For each of the algorithm segments in 6—19, assume...Ch. 11.3 - For each of the algorithm segments in 6—19, assume...Ch. 11.3 - For each of the algorithm segments in 6—19, assume...Ch. 11.3 - For each of the algorithm segments in 6—19, assume...Ch. 11.3 - For each of the algorithm segments in 6—19, assume...Ch. 11.3 - For each of the algorithm segments in 6—19, assume...Ch. 11.3 - For each of the algorithm segments in 6—19, assume...Ch. 11.3 - For each of the algorithm segments in 6—19, assume...Ch. 11.3 - For each of the algorithm segments in 6—19, assume...Ch. 11.3 - For each of the algorithm segments in 6—19, assume...Ch. 11.3 - For each of the algorithm segments in 6—19, assume...Ch. 11.3 - Construct a table showing the result of each step...Ch. 11.3 - Construct a table showing the result of each step...Ch. 11.3 - Construct a trace table showing the action of...Ch. 11.3 - Construct a trace table showing the action of...Ch. 11.3 - How many comparisons between values of a[j] and x...Ch. 11.3 - How many comparisons between values of a[j] and x...Ch. 11.3 - According to Example 11.3.6. the maximum number of...Ch. 11.3 - Consider the recurrence relation that arose in...Ch. 11.3 - Exercises 28—35 refer to selection sort, which is...Ch. 11.3 - Exercises 28—35 refer to selection sort, which is...Ch. 11.3 - Exercises 28—35 refer to selection sort, which is...Ch. 11.3 - Exercises 28—35 refer to selection sort, which is...Ch. 11.3 - Exercises 28—35 refer to selection sort, which is...Ch. 11.3 - Exercises 28—35 refer to selection sort, which is...Ch. 11.3 - Exercises 28—35 refer to selection sort, which is...Ch. 11.3 - Exercises 28—35 refer to selection sort, which is...Ch. 11.3 - Exercises 36—39 refer to the following algorithm...Ch. 11.3 - Exercises 36—39 refer to the following algorithm...Ch. 11.3 - Exercises 36—39 refer to the following algorithm...Ch. 11.3 - Exercises 36—39 refer to the following algorithm...Ch. 11.3 - Exercises 40—43 refer to another algorithm, known...Ch. 11.3 - Exercises 40—43 refer to another algorithm, known...Ch. 11.3 - Exercises 40—43 refer to another algorithm, known...Ch. 11.3 - Exercises 40—43 refer to another algorithm, known...Ch. 11.4 - The domain of any exponential function is , and...Ch. 11.4 - The domain of any logarithmic function is and its...Ch. 11.4 - If k is an integer and 2kx2k+1 then...Ch. 11.4 - If b is a real number with b1 , then there is a...Ch. 11.4 - If n is a positive integer, then 1+12+13++1nhas...Ch. 11.4 - Graph each function defined in 1-8. 1. f(x)=3x for...Ch. 11.4 - Graph each function defined in 1—8. 2. g(x)=(13)x...Ch. 11.4 - Graph each function defined in 1—8. 3. h(x)=log10x...Ch. 11.4 - Graph each function defined in 1—8. 4. k(x)=log2x...Ch. 11.4 - Graph each function defined in 1—8. 5. F(x)=log2x...Ch. 11.4 - Graph each function defined in 1—8. 6. G(x)=log2x...Ch. 11.4 - Graph each function defined in 1—8. 7. H(x)=xlog2x...Ch. 11.4 - Graph each function defined in 1—8. 8....Ch. 11.4 - The scale of the graph shown in Figure 11.4.1 is...Ch. 11.4 - a. Use the definition of logarithm to show that...Ch. 11.4 - Let b1 . a. Use the fact that u=logbvv=bu to show...Ch. 11.4 - Give a graphical interpretation for property...Ch. 11.4 - Suppose a positive real number x satisfies the...Ch. 11.4 - a. Prove that if x is a positive real number and k...Ch. 11.4 - If n is an odd integer and n1 ,is log2(n1)=log2(n)...Ch. 11.4 - If, n is an odd integer and n1 , is...Ch. 11.4 - If n is an odd integer and n1 , is...Ch. 11.4 - In 18 and 19, indicate how many binary digits are...Ch. 11.4 - In 18 and 19, indicate how many binary digits are...Ch. 11.4 - It was shown in the text that the number of binary...Ch. 11.4 - In each of 21 and 22, a sequence is specified by a...Ch. 11.4 - In each of 21 and 22, a sequence is specified by a...Ch. 11.4 - Define a sequence c1,c2,c3,recursively as follows:...Ch. 11.4 - Use strong mathematical induction to show that for...Ch. 11.4 - Exercises 25 and 26 refer to properties 11.4.9 and...Ch. 11.4 - Exercises 25 and 26 refer to properties 11.4.9 and...Ch. 11.4 - Use Theorems 11.2.7-11.2.9 and properties 11.4.11,...Ch. 11.4 - Use Theorems 11.2.7-11.2.9 and properties 11.4.11,...Ch. 11.4 - Use Theorems 11.2.7—11.2.9 and properties 11.4.11,...Ch. 11.4 - Use Theorems 11.2.7—11.2.9 and properties 11.4.11,...Ch. 11.4 - Show that 4n is not O(2n) .Ch. 11.4 - Prove each of the statements in 32—37, assuming n...Ch. 11.4 - Prove each of the statements in 32—37, assuming n...Ch. 11.4 - Prove each of the statements in 32—37, assuming n...Ch. 11.4 - Prove each of the statements in 32—37, assuming n...Ch. 11.4 - Prove each of the statements in 32—37, assuming n...Ch. 11.4 - Prove each of the statements in 32—37, assuming n...Ch. 11.4 - Quantities of the form k1n+k2nlognfor positive...Ch. 11.4 - Calculate the values of the harmonic sums...Ch. 11.4 - Use part (d) of Example 11.4.7 to show that...Ch. 11.4 - Show that log2n is (log2n) .Ch. 11.4 - Show that log2n is (log2n) .Ch. 11.4 - Prove by mathematical induction that n10n for...Ch. 11.4 - Prove by mathematical induction that log2nn for...Ch. 11.4 - Show that if n is a variable that takes positive...Ch. 11.4 - Let n be a variable that takes positive integer...Ch. 11.4 - For each positive real number u,log2uuUse this...Ch. 11.4 - Use the result of exercise 47 above to prove the...Ch. 11.4 - Exercises 49 and 50 use L’Hôpital’s rule from...Ch. 11.4 - Exercises 49 and 50 use L’Hôpital’s rule from...Ch. 11.4 - Complete the proof in Example 11.4.4.Ch. 11.5 - To solve a problem using a divide-and-conquer...Ch. 11.5 - To search an array using the binary search...Ch. 11.5 - The worst-case order of the binary search...Ch. 11.5 - To sort an array using the merge sort algorithm,...Ch. 11.5 - The worst-case order of the merge sort algorithm...Ch. 11.5 - Use the facts that log2103.32 and that for each...Ch. 11.5 - Suppose an algorithm requires clog2n operations...Ch. 11.5 - Exercises 3 and 4 illustrate that for relatively...Ch. 11.5 - Exercises 3 and 4 illustrate that for relatively...Ch. 11.5 - In 5 and 6, trace the action of the binary search...Ch. 11.5 - In 5 and 6, trace the action of the binary search...Ch. 11.5 - Suppose bot and top are positive integers with...Ch. 11.5 - Exercises 8—11 refer to the following algorithm...Ch. 11.5 - Exercises 8—11 refer to the following algorithm...Ch. 11.5 - Exercises 8—11 refer to the following algorithm...Ch. 11.5 - Exercises 8—11 refer to the following algorithm...Ch. 11.5 - Exercises 12—15 refer to the following algorithm...Ch. 11.5 - Exercises 12—15 refer to the following algorithm...Ch. 11.5 - Exercises 12—15 refer to the following algorithm...Ch. 11.5 - Exercises 12—15 refer to the following algorithm...Ch. 11.5 - Complete the proof of case 2 of the strong...Ch. 11.5 - Trace the modified binary search algorithm for the...Ch. 11.5 - Suppose an array of length k is input to the while...Ch. 11.5 - Let wnbe the number of iterations of the while...Ch. 11.5 - In 20 and 21, draw a diagram like Figure 11.5.4 to...Ch. 11.5 - In 20 and 21, draw a diagram like Figure 11.5.4 to...Ch. 11.5 - In 22 and 23, draw a diagram like Figure 11.5.5 to...Ch. 11.5 - In 22 and 23, draw a diagram like Figure 11.5.5 to...Ch. 11.5 - Show that given an array a[bot],a[bot+1],,a[top]of...Ch. 11.5 - The recurrence relation for m1,m2,m3,,which arises...Ch. 11.5 - It might seem that n1 multiplications are needed...

Find more solutions based on key concepts

Show solutions Change each binary number to decimal form: 10001

Elementary Technical Mathematics

Rewrite the following standard form numbers in scientific notation. 80,000

Mathematics For Machine Technology

Exercises 3344 refer to lotteries; the order in which lottery numbers are chosen does not matter. A 6/49 lotter...

Mathematics: A Practical Odyssey

In Problems 17-24, find the slope and y-intercept and then graph each equation.

Mathematical Applications for the Management, Life, and Social Sciences

In Exercises 39 and 40, determine whether each statement is true or false for all sets A and B. 39. (A âˆª B) =...

Mathematical Excursions (MindTap Course List)

Evaluate expressions in Exercises 3756, rounding your answer to four significant digits where necessary. 45

Finite Mathematics

Find the solutions, if it exists, of the system of linear equations whose augmented matrix in reduced form foll...

Finite Mathematics for the Managerial, Life, and Social Sciences

Show that each of the following is true. sin(90+)=cos

Trigonometry (MindTap Course List)

Which function best fits the graph at the right?
a) f(x, y) = 4 – x2
b) f(x, y) = 4 – y2
c) f(x, y) = 4 – xy
d...

Study Guide for Stewart's Multivariable Calculus, 8th

In Exercises 27 to 30, find the area of the figure shown. Given: Hexagon RSTVWX with WV-XT-RS- RS=10 ST=8 TV=5 ...

Elementary Geometry For College Students, 7e

It has been demonstrated that students with high self-esteem tend to have higher grades than students with low ...

Research Methods for the Behavioral Sciences (MindTap Course List)

6. Minimum Dimensions A campground owner plans to enclose a rectangular field adjacent to a river. The owner wa...

Calculus: An Applied Approach (MindTap Course List)

Refer to the previous exercise. a. What is the expected number of calls among the 25 that involve a fax message...

Probability and Statistics for Engineering and the Sciences

Using the Mean Value Theorem In Exercises 13-18, determine whether the Mean Value Theorem can he applied to f o...

Calculus (MindTap Course List)

In a survey of 1000 women age 22 to 35 who work full time, 540 indicated that they would be willing to give up ...

Introduction To Statistics And Data Analysis

Use Greens Theorem to evaluate c1+x3dx+2xydy where C is the triangle with vertices (0,0),(1,0), and (1,3).

Calculus (MindTap Course List)

Expand each expression in Exercises 122. (x22x+1)2

Finite Mathematics and Applied Calculus (MindTap Course List)

Set up, but do not evaluate, an integral for the volume of the solid obtained by rotating the region bounded by...

Single Variable Calculus: Early Transcendentals, Volume I

Graphs of populations of two species are shown. Use them to sketch the corresponding phase trajectory. 7.

Calculus: Early Transcendentals

Use logarithmic differentiation to find the derivative of the function. y = xx

Single Variable Calculus: Early Transcendentals

In Exercises 9-16, complete the table by computing f(x) at the given values of x. Use these results to estimate...

Applied Calculus for the Managerial, Life, and Social Sciences: A Brief Approach

A drug store chain has stores in four cities: 38 stores in Indianapolis. 45 in Louisville, 80 in St. Louis, and...

Statistics for Business & Economics, Revised (MindTap Course List)

Find the midpoint of the line segment that joins each pair of points in Exercise 2. a 2,-3 and 2,5 c -4,1 and 4...

Elementary Geometry for College Students

A random sample of n=12 individuals is selected from a population with =70 , and a treatment is administered to...

Statistics for The Behavioral Sciences (MindTap Course List)

Finding the Volume of a Solid In Exercises 19 and 20, use the disk method to find the volume of the solid gener...

Calculus of a Single Variable

Research results suggest that IQ scores for boys are more variable than IQ scores for s girls (Arden Plomin, 2...

Essentials of Statistics for The Behavioral Sciences (MindTap Course List)

Twenty-five residents of a community for senior citizens were asked to keep track of the number of hours they w...

Essentials Of Statistics

Using tan2 x = sec2 x − 1, ∫ tan3 x dx =

Study Guide for Stewart's Single Variable Calculus: Early Transcendentals, 8th

Basic Calculations 2.65.96.3

Functions and Change: A Modeling Approach to College Algebra (MindTap Course List)

Let R be the set of all matrices of the form [abba], where a and b are real numbers. Assume that R is a commuta...

Elements Of Modern Algebra

As an insurance agent, calculate the annual premium fur the following clients. Name Territory DriverClass Bodil...

Contemporary Mathematics for Business & Consumers

Suppose N = 10 and r = 3. Compute the hypergeometric probabilities for the followingvalues of n and x. a. n = 4...

Essentials Of Statistics For Business & Economics

Assume that all the given functions have continuous second-order partial derivatives. 53. If z = f(x, y), where...

Multivariable Calculus

(a) Approximate f by a Taylor polynomial with degree n at the number a. (b) Use Taylors Inequality to estimate ...

Single Variable Calculus

In exercise 7, the data on y = annual sales ( 1000s) for new customer accounts and x = number of years of exper...

STATISTICS F/BUSINESS+ECONOMICS-TEXT

Using the Alternative Form of the Derivative In Exercises 69-76, use the alternative form of the derivative to ...

Calculus: Early Transcendental Functions (MindTap Course List)

Describe how experimenter bias can be a threat to internal validity; that is, how can experimenter bias provide...

Research Methods for the Behavioral Sciences (MindTap Course List)

Graphical, Numerical, and Analytic Analysis In Exercises 77-86, use a graphing utility to graph the function an...

Calculus: Early Transcendental Functions

For Problems 1-50, solve each equation. Objective 1 3(x2)=11

Intermediate Algebra

PROVE: Laws of Exponents Prove the following Laws of Exponents for the case in which m and n are positive integ...

Precalculus: Mathematics for Calculus (Standalone Book)

Economics: Entry-Level Jobs An economist is studying the job market in Denver-area neighborhoods. Let x represe...

Understanding Basic Statistics

Practice Find the slope of the line passing through each pair of points, if possible. P(3,7);Q(6,16)

College Algebra (MindTap Course List)

Evaluating a Triple Iterated Integral In Exercises 3-8, evaluate the triple iterated integral. 020/20sincosddd

Multivariable Calculus

For the following exercises, find the values for each function, if they exist, then simplify. a. f(0) b. f(1) c...

Calculus Volume 1

In Problems 118 solve the given differential equation. 14. x2y 7xy + 41y = 0

A First Course in Differential Equations with Modeling Applications (MindTap Course List)

A spherical balloon is being in?ated at a constant rate. If the volume of the balloon changes from 36 in.3 to 2...

Calculus Volume 2

Corporate Hiring Outlook. A Businessweek/Harris poll asked senior executives at large corporations their opinio...

Modern Business Statistics with Microsoft Office Excel (with XLSTAT Education Edition Printed Access Card) (MindTap Course List)