Math

Discrete Mathematics With ApplicationsFor each of the algorithm segments in 6—19, assume that n is a positive integer. (a) Compute the actual number of elementary operations (additions, subtractions, multiplications, divisions, and comparisons) that are performed when the algorithm segment is executed. For simplicity, however, count only comparisons that occur within if then statements; ignore those implied by for-next loops. (b) Use the theorem on polynomial orders to find an order for the algorithm segment. 7. m a x : = a [ 1 ] for i : = 2 to n if m a x < a [ i ] then m a x : = a [ i ] next iBuyFind*arrow_forward*

5th Edition

EPP + 1 other

Publisher: Cengage Learning,

ISBN: 9781337694193

Chapter 11.3, Problem 7ES

Textbook Problem

For each of the algorithm segments in 6—19, assume that *n *is a positive integer. (a) Compute the actual number of elementary operations (additions, subtractions, multiplications, divisions, and comparisons) that are performed when the algorithm segment is executed. For simplicity, however, count only comparisons that occur within if then statements; ignore those implied by for-next loops. (b) Use the theorem on polynomial orders to find an order for the algorithm segment.

7.
*n*if
*i*

Discrete Mathematics With Applications

Show all chapter solutions

Ch. 11.1 - If f is a real-valued function of a real variable,...Ch. 11.1 - A point (x,y) lies on the graph of a real-valued...Ch. 11.1 - If a is any nonnegative real number, then the...Ch. 11.1 - Given a function f:RR and a real number M, the...Ch. 11.1 - Given a function f:RR , to prove that f is...Ch. 11.1 - Given a function f:RR , to prove that f is...Ch. 11.1 - The graph of a function f is shown below. a. Is...Ch. 11.1 - The graph of a function g is shown below. a. Is...Ch. 11.1 - Sketch the graphs of the power functions p1/3and...Ch. 11.1 - Sketch the graphs of the power functions p3 and p4...

Ch. 11.1 - Sketch the graphs of y=2x and y=2x for each real...Ch. 11.1 - Sketch a graph for each of the functions defined...Ch. 11.1 - Sketch a graph for each of the functions defined...Ch. 11.1 - Sketch a graph for each of the functions defined...Ch. 11.1 - Sketch a graph for each of the functions defined...Ch. 11.1 - In each of 10—13 a function is defined on a set of...Ch. 11.1 - In each of 10—13 a function is defined on a set of...Ch. 11.1 - In each of 10—13 a function is defined on a set of...Ch. 11.1 - In each of 10—13 a function is defined on a set of...Ch. 11.1 - The graph of a function f is shown below. Find the...Ch. 11.1 - Show that the function f:RR defined by the formula...Ch. 11.1 - Show that the function g:RR defined by the formula...Ch. 11.1 - Let h be the function from R to R defined by the...Ch. 11.1 - Let k:RR be the function defined by the formula...Ch. 11.1 - Show that if a function f:RRis increasing, then f...Ch. 11.1 - Given real-valued functions f and g with the same...Ch. 11.1 - a. Let m be any positive integer, and define...Ch. 11.1 - Let f be the function whose graph follows. Sketch...Ch. 11.1 - Let h be the function whose graph is shown below....Ch. 11.1 - Let f be a real-valued function of a real...Ch. 11.1 - Let f be a real-valued function of a real...Ch. 11.1 - Let f be a real-valued function of a real...Ch. 11.1 - In 27 and 28, functions f and g are defined. In...Ch. 11.1 - In 27 and 28, functions f and g are defined. In...Ch. 11.2 - A sentence of the form Ag(n)f(n) for every na...Ch. 11.2 - A sentence of the tirm “ 0f(n)Bg(n) for every nb ”...Ch. 11.2 - A sentence of the form “ Ag(n)f(n)Bg(n)for every...Ch. 11.2 - When n1,n n2 and n2 n5__________.Ch. 11.2 - According to the theorem on polynomial orders, if...Ch. 11.2 - If n is a positive integer, then 1+2+3++n has...Ch. 11.2 - The following is a formal definition for ...Ch. 11.2 - The following is a formal definition for...Ch. 11.2 - The following is a formal definition for ...Ch. 11.2 - In 4—9, express each statement using -, O-, or ...Ch. 11.2 - In 4—9, express each statement using -, O-, or ...Ch. 11.2 - In 4—9, express each statement using -, O-, or ...Ch. 11.2 - In 4—9, express each statement using -, O-, or ...Ch. 11.2 - In 4—9, express each statement using -, O-, or ...Ch. 11.2 - In 4—9, express each statement using -, O-, or ...Ch. 11.2 - a. Show that for any integer n1,02n2+15n+421n2 ....Ch. 11.2 - a. Show that for any integer n1,023n4+8n2+4n35n4 ....Ch. 11.2 - a. Show that for any integer n1,07n3+10n2+320n3 ....Ch. 11.2 - Use the definition of -notation to show that...Ch. 11.2 - Use the definition of -notation to show that...Ch. 11.2 - Use the definition of -notation to show that...Ch. 11.2 - Use the definition of -notation to show that...Ch. 11.2 - Use the definition of -notation to show that n2is...Ch. 11.2 - Prove Theorem 11.2.7(b): If f and g are...Ch. 11.2 - Prove Theorem 11.2.1(b): If f and g are...Ch. 11.2 - Without using Theorem 11.2.4 prove that n5 is not...Ch. 11.2 - Prove Theorem 11.2.4: If f is a real-valued...Ch. 11.2 - a. Use one of the methods of Example 11.2.4 to...Ch. 11.2 - a. Use one of the methods of Example 11.2.4 to...Ch. 11.2 - a. Use one of the methods of Example 11.2.4 to...Ch. 11.2 - Suppose P(n)=amnm+am1nm1++a2n2+a1n+a0 , where all...Ch. 11.2 - Use the theorem on polynomial orders to prove each...Ch. 11.2 - Use the theorem on polynomial orders to prove each...Ch. 11.2 - Use the theorem on polynomial orders to prove each...Ch. 11.2 - Use the theorem on polynomial orders to prove each...Ch. 11.2 - Use the theorem on polynomial orders to prove each...Ch. 11.2 - Use the theorem on polynomial orders to prove each...Ch. 11.2 - Prove each of the statements in 32—39. Use the...Ch. 11.2 - Prove each of the statements in 32—39. Use the...Ch. 11.2 - Prove each of the statements in 32—39. Use the...Ch. 11.2 - Prove each of the statements in 32—39. Use the...Ch. 11.2 - Prove each of the statements in 32—39. Use the...Ch. 11.2 - Prove each of the statements in 32—39. Use the...Ch. 11.2 - Prove each of the statements in 32—39. Use the...Ch. 11.2 - Prove each of the statements in 32—39. Use the...Ch. 11.2 - a. Prove: If c is a positive real number and if f...Ch. 11.2 - Prove: If c is a positive real number and...Ch. 11.2 - What can you say about a function f with the...Ch. 11.2 - Use Theorems 11.2.5-11.2.9 and the results of...Ch. 11.2 - Use Theorems 11.2.5-11.2.9 and the results of...Ch. 11.2 - Use Theorems 11.2.5-11.2.9 and the results of...Ch. 11.2 - a. Use mathematical induction to prove that if n...Ch. 11.2 - a. Let x be any positive real number. Use...Ch. 11.2 - Prove Theorem 11.2.6(b): If f and g are...Ch. 11.2 - Prove Theorem 11.2.7(a): If f is a real-valued...Ch. 11.2 - Prove Theorem 11.2.8: a. Let f and g be...Ch. 11.2 - Prove Theorem 11.2.9: a. Let f1,f2 , and g be...Ch. 11.3 - When an algorithm segment contains a nested...Ch. 11.3 - In the worst case for an input array of length n,...Ch. 11.3 - The worst-case order of the insertion sort...Ch. 11.3 - Suppose a computer takes 1 nanosecond ( =109...Ch. 11.3 - Suppose an algorithm requires cn2operations when...Ch. 11.3 - Suppose an algorithm requires cn3operations when...Ch. 11.3 - Exercises 4—5 explore the fact that for relatively...Ch. 11.3 - Exercises 4—5 explore the fact that for relatively...Ch. 11.3 - For each of the algorithm segments in 6—19, assume...Ch. 11.3 - For each of the algorithm segments in 6—19, assume...Ch. 11.3 - For each of the algorithm segments in 6—19, assume...Ch. 11.3 - For each of the algorithm segments in 6—19, assume...Ch. 11.3 - For each of the algorithm segments in 6—19, assume...Ch. 11.3 - For each of the algorithm segments in 6—19, assume...Ch. 11.3 - For each of the algorithm segments in 6—19, assume...Ch. 11.3 - For each of the algorithm segments in 6—19, assume...Ch. 11.3 - For each of the algorithm segments in 6—19, assume...Ch. 11.3 - For each of the algorithm segments in 6—19, assume...Ch. 11.3 - For each of the algorithm segments in 6—19, assume...Ch. 11.3 - For each of the algorithm segments in 6—19, assume...Ch. 11.3 - For each of the algorithm segments in 6—19, assume...Ch. 11.3 - For each of the algorithm segments in 6—19, assume...Ch. 11.3 - Construct a table showing the result of each step...Ch. 11.3 - Construct a table showing the result of each step...Ch. 11.3 - Construct a trace table showing the action of...Ch. 11.3 - Construct a trace table showing the action of...Ch. 11.3 - How many comparisons between values of a[j] and x...Ch. 11.3 - How many comparisons between values of a[j] and x...Ch. 11.3 - According to Example 11.3.6. the maximum number of...Ch. 11.3 - Consider the recurrence relation that arose in...Ch. 11.3 - Exercises 28—35 refer to selection sort, which is...Ch. 11.3 - Exercises 28—35 refer to selection sort, which is...Ch. 11.3 - Exercises 28—35 refer to selection sort, which is...Ch. 11.3 - Exercises 28—35 refer to selection sort, which is...Ch. 11.3 - Exercises 28—35 refer to selection sort, which is...Ch. 11.3 - Exercises 28—35 refer to selection sort, which is...Ch. 11.3 - Exercises 28—35 refer to selection sort, which is...Ch. 11.3 - Exercises 28—35 refer to selection sort, which is...Ch. 11.3 - Exercises 36—39 refer to the following algorithm...Ch. 11.3 - Exercises 36—39 refer to the following algorithm...Ch. 11.3 - Exercises 36—39 refer to the following algorithm...Ch. 11.3 - Exercises 36—39 refer to the following algorithm...Ch. 11.3 - Exercises 40—43 refer to another algorithm, known...Ch. 11.3 - Exercises 40—43 refer to another algorithm, known...Ch. 11.3 - Exercises 40—43 refer to another algorithm, known...Ch. 11.3 - Exercises 40—43 refer to another algorithm, known...Ch. 11.4 - The domain of any exponential function is , and...Ch. 11.4 - The domain of any logarithmic function is and its...Ch. 11.4 - If k is an integer and 2kx2k+1 then...Ch. 11.4 - If b is a real number with b1 , then there is a...Ch. 11.4 - If n is a positive integer, then 1+12+13++1nhas...Ch. 11.4 - Graph each function defined in 1-8. 1. f(x)=3x for...Ch. 11.4 - Graph each function defined in 1—8. 2. g(x)=(13)x...Ch. 11.4 - Graph each function defined in 1—8. 3. h(x)=log10x...Ch. 11.4 - Graph each function defined in 1—8. 4. k(x)=log2x...Ch. 11.4 - Graph each function defined in 1—8. 5. F(x)=log2x...Ch. 11.4 - Graph each function defined in 1—8. 6. G(x)=log2x...Ch. 11.4 - Graph each function defined in 1—8. 7. H(x)=xlog2x...Ch. 11.4 - Graph each function defined in 1—8. 8....Ch. 11.4 - The scale of the graph shown in Figure 11.4.1 is...Ch. 11.4 - a. Use the definition of logarithm to show that...Ch. 11.4 - Let b1 . a. Use the fact that u=logbvv=bu to show...Ch. 11.4 - Give a graphical interpretation for property...Ch. 11.4 - Suppose a positive real number x satisfies the...Ch. 11.4 - a. Prove that if x is a positive real number and k...Ch. 11.4 - If n is an odd integer and n1 ,is log2(n1)=log2(n)...Ch. 11.4 - If, n is an odd integer and n1 , is...Ch. 11.4 - If n is an odd integer and n1 , is...Ch. 11.4 - In 18 and 19, indicate how many binary digits are...Ch. 11.4 - In 18 and 19, indicate how many binary digits are...Ch. 11.4 - It was shown in the text that the number of binary...Ch. 11.4 - In each of 21 and 22, a sequence is specified by a...Ch. 11.4 - In each of 21 and 22, a sequence is specified by a...Ch. 11.4 - Define a sequence c1,c2,c3,recursively as follows:...Ch. 11.4 - Use strong mathematical induction to show that for...Ch. 11.4 - Exercises 25 and 26 refer to properties 11.4.9 and...Ch. 11.4 - Exercises 25 and 26 refer to properties 11.4.9 and...Ch. 11.4 - Use Theorems 11.2.7-11.2.9 and properties 11.4.11,...Ch. 11.4 - Use Theorems 11.2.7-11.2.9 and properties 11.4.11,...Ch. 11.4 - Use Theorems 11.2.7—11.2.9 and properties 11.4.11,...Ch. 11.4 - Use Theorems 11.2.7—11.2.9 and properties 11.4.11,...Ch. 11.4 - Show that 4n is not O(2n) .Ch. 11.4 - Prove each of the statements in 32—37, assuming n...Ch. 11.4 - Prove each of the statements in 32—37, assuming n...Ch. 11.4 - Prove each of the statements in 32—37, assuming n...Ch. 11.4 - Prove each of the statements in 32—37, assuming n...Ch. 11.4 - Prove each of the statements in 32—37, assuming n...Ch. 11.4 - Prove each of the statements in 32—37, assuming n...Ch. 11.4 - Quantities of the form k1n+k2nlognfor positive...Ch. 11.4 - Calculate the values of the harmonic sums...Ch. 11.4 - Use part (d) of Example 11.4.7 to show that...Ch. 11.4 - Show that log2n is (log2n) .Ch. 11.4 - Show that log2n is (log2n) .Ch. 11.4 - Prove by mathematical induction that n10n for...Ch. 11.4 - Prove by mathematical induction that log2nn for...Ch. 11.4 - Show that if n is a variable that takes positive...Ch. 11.4 - Let n be a variable that takes positive integer...Ch. 11.4 - For each positive real number u,log2uuUse this...Ch. 11.4 - Use the result of exercise 47 above to prove the...Ch. 11.4 - Exercises 49 and 50 use L’Hôpital’s rule from...Ch. 11.4 - Exercises 49 and 50 use L’Hôpital’s rule from...Ch. 11.4 - Complete the proof in Example 11.4.4.Ch. 11.5 - To solve a problem using a divide-and-conquer...Ch. 11.5 - To search an array using the binary search...Ch. 11.5 - The worst-case order of the binary search...Ch. 11.5 - To sort an array using the merge sort algorithm,...Ch. 11.5 - The worst-case order of the merge sort algorithm...Ch. 11.5 - Use the facts that log2103.32 and that for each...Ch. 11.5 - Suppose an algorithm requires clog2n operations...Ch. 11.5 - Exercises 3 and 4 illustrate that for relatively...Ch. 11.5 - Exercises 3 and 4 illustrate that for relatively...Ch. 11.5 - In 5 and 6, trace the action of the binary search...Ch. 11.5 - In 5 and 6, trace the action of the binary search...Ch. 11.5 - Suppose bot and top are positive integers with...Ch. 11.5 - Exercises 8—11 refer to the following algorithm...Ch. 11.5 - Exercises 8—11 refer to the following algorithm...Ch. 11.5 - Exercises 8—11 refer to the following algorithm...Ch. 11.5 - Exercises 8—11 refer to the following algorithm...Ch. 11.5 - Exercises 12—15 refer to the following algorithm...Ch. 11.5 - Exercises 12—15 refer to the following algorithm...Ch. 11.5 - Exercises 12—15 refer to the following algorithm...Ch. 11.5 - Exercises 12—15 refer to the following algorithm...Ch. 11.5 - Complete the proof of case 2 of the strong...Ch. 11.5 - Trace the modified binary search algorithm for the...Ch. 11.5 - Suppose an array of length k is input to the while...Ch. 11.5 - Let wnbe the number of iterations of the while...Ch. 11.5 - In 20 and 21, draw a diagram like Figure 11.5.4 to...Ch. 11.5 - In 20 and 21, draw a diagram like Figure 11.5.4 to...Ch. 11.5 - In 22 and 23, draw a diagram like Figure 11.5.5 to...Ch. 11.5 - In 22 and 23, draw a diagram like Figure 11.5.5 to...Ch. 11.5 - Show that given an array a[bot],a[bot+1],,a[top]of...Ch. 11.5 - The recurrence relation for m1,m2,m3,,which arises...Ch. 11.5 - It might seem that n1 multiplications are needed...

Find more solutions based on key concepts

Show solutions Finding Percentage, Percent, and Base in Practical Applications Solve the following problems. 29. An alloy of r...

Mathematics For Machine Technology

In Exercises 14, complete the given tables. Exponential Form Logarithmic Form log212=1 log10100,000=5 log100.00...

Finite Mathematics

Write the ordered pair corresponding to each point in Illustration I: ILLUSTRATION 1 I

Elementary Technical Mathematics

In Exercises 116, determine whether the argument is valid. pqqr~p~p~r

Finite Mathematics for the Managerial, Life, and Social Sciences

21. From the following list of sets, indicate which pairs of sets are disjoint.

Mathematical Applications for the Management, Life, and Social Sciences

Answer the following, using complete sentences and your own words. HISTORY QUESTIONS Describe the origins of Hi...

Mathematics: A Practical Odyssey

Find the value of x.

Mathematical Excursions (MindTap Course List)

Solve the following for the base. Round to hundredths when necessary. .84 is 62.5% of what number?

Contemporary Mathematics for Business & Consumers

In Exercises 17 to 20, find the value of the variable named in each formula. Leave in the answers for Exercise...

Elementary Geometry for College Students

Evaluate the algebraic expressions in Problems 35-57 for the given values of the variables. Objectives 2 2(x1)(...

Intermediate Algebra

The following matrix represents the results (the means) from a 2 2 factorial study. One mean is not given. Al ...

Research Methods for the Behavioral Sciences (MindTap Course List)

Consider the following hypothesis test:
A sample of 300 items was selected. Compute the p-value and state your...

Essentials Of Statistics For Business & Economics

A normal distribution has a mean of = 54 and standard deviation of = 6. What is the probability of randomly s...

Essentials of Statistics for The Behavioral Sciences (MindTap Course List)

You have compiled the following information on each of the graduates voted most likely to succeed by a local hi...

Essentials Of Statistics

a. For a fixed element a of a commutative ring R, prove that the set I={ar|rR} is an ideal of R. (Hint: Compare...

Elements Of Modern Algebra

Even and Odd Functions In Exercises 75 and 76, evaluate the integral using the properties of even and odd funct...

Calculus of a Single Variable

Solving an Exponential or Logarithmic Equation InExercises 107110, solve for x accurate to three decimal places...

Calculus: Early Transcendental Functions (MindTap Course List)

Evaluate the integral. 022x1dx

Calculus: Early Transcendentals

Finding Inverse Functions Find the inverse function of f. 61. f(x) = 4 x2, x 0

Precalculus: Mathematics for Calculus (Standalone Book)

Recall that in Exercise 10.41, a survey of 304 U.S. businesses found that 201 indicated that they monitor emplo...

Introduction To Statistics And Data Analysis

Identify and explain the common threats to external validity and identify threats when they appear in a researc...

Research Methods for the Behavioral Sciences (MindTap Course List)

In Exercises 914, determine whether the function is a polynomial function, a rational function, or some other f...

Applied Calculus for the Managerial, Life, and Social Sciences: A Brief Approach

Finding a Derivative In Exercises 113-118. find the derivative of the function. y=arctan(2x23)

Calculus: Early Transcendental Functions

Refer to Table 2.12. a. Prepare a crosstabulation of the data on Industry (rows) and Brand Revenue ( billions)....

STATISTICS F/BUSINESS+ECONOMICS-TEXT

A circle is increasing in area at 4 cm2/min. How fast is the radius changing when the radius is 10 cm?
cm/min...

Study Guide for Stewart's Single Variable Calculus: Early Transcendentals, 8th

Graph each quadratic function given in general form. Identify the vertex, intercepts, and axis of symmetry. f(x...

College Algebra (MindTap Course List)

a Evaluate the line integral CFdr, where F(x,y,z)=xizj+yk and C is given by r(t)=2ti+3tjt2k,1t1. b Illustrate p...

Calculus (MindTap Course List)

Evaluate expressions in Exercises 3756, rounding your answer to four significant digits where necessary. 19

Applied Calculus

Demand The demand function for a commodity is p=14.751+0.01x,x0 where p is the price per unit and x is the numb...

Calculus: An Applied Approach (MindTap Course List)

Sketching a Quadric SurfaceIn Exercises 1526, classify and sketch the quadric surface. Use a computer algebra s...

Multivariable Calculus

Let X1,..., Xn be a random sample from a pdf that is symmetric about . An estimator for that has been found to...

Probability and Statistics for Engineering and the Sciences

Describe the motion of a particle with position (x, y) as t varies in the given interval. 22. x = sin t, y = co...

Single Variable Calculus

Describe the motion of a particle with position (x, y) as t varies in the given interval. 22. x = sin t, y = co...

Multivariable Calculus

Expand each expression in Exercises 122. (2x2)(3x4)

Finite Mathematics and Applied Calculus (MindTap Course List)

Consider the experiment of tossing a coin three times. a. Develop a tree diagram for the experiment. b. List th...

Statistics for Business & Economics, Revised (MindTap Course List)

Find for y defined implicity by .

Study Guide for Stewart's Multivariable Calculus, 8th

For Questions 9 and 10, determine if the statement is true or false. The notation f(x) means the reciprocal of ...

Trigonometry (MindTap Course List)

Using Partial Fractions In Exercises 37-44, use partial fractions to find the indefinite integral. 5x2x2xdx

Calculus (MindTap Course List)

The graph of the acceleration a(t) of a car measured in ft/s2 is shown. Use Simpsons Rule to estimate the incre...

Single Variable Calculus: Early Transcendentals

Explain, in terms of linear approximations or differentials, why the approximation is reasonable. 31. 19.980.10...

Single Variable Calculus: Early Transcendentals, Volume I

For Problems 15-20. use the specified number of classes to do the following. (a) Find the class width (b) Make ...

Understanding Basic Statistics

A developmental psychologist is examining the development of language skills from age 2 to age 4. Three differe...

Statistics for The Behavioral Sciences (MindTap Course List)

Reminder Round all answers to two decimal places unless otherwise indicated. Fishing for SardinesThis is a cont...

Functions and Change: A Modeling Approach to College Algebra (MindTap Course List)

In Review Exercises 5 to 8, state the ratio needed, and use it to find the measure of the indicated angle to th...

Elementary Geometry For College Students, 7e

For the following exercises, consider an athlete running a 40-m dash. The position of the athlete is given by d...

Calculus Volume 1

In the following exercises, evaluate each definite integral using the Fundamental Theorem of Calculus, Part 2. ...

Calculus Volume 2

In Problems 1522 determine whether the given set of functions is linearly independent on the interval (, ). 15....

A First Course in Differential Equations with Modeling Applications (MindTap Course List)

Solving a System by Elimination In Exercises 13-30, solve the system by the method of elimination and check any...

College Algebra

The US Department of Energy reported that 51.7% of homes were heated by natural gas. A random sample of 221 hom...

Introductory Statistics

68. Mahoney Custom Home Builders, Inc. of Canyon Lake, Texas, asked visitors to their website what is most impo...

Modern Business Statistics with Microsoft Office Excel (with XLSTAT Education Edition Printed Access Card) (MindTap Course List)