BuyFindarrow_forward

Discrete Mathematics With Applicat...

5th Edition
EPP + 1 other
ISBN: 9781337694193

Solutions

Chapter
Section
BuyFindarrow_forward

Discrete Mathematics With Applicat...

5th Edition
EPP + 1 other
ISBN: 9781337694193
Textbook Problem
1 views

Define a sequence c 1 , c 2 , c 3 , recursively as follows:

c 1 = 0 c k = c k / 2 + k , for each integer k 2 .

Use strong mathematical induction to show that c n n 2 for every integer n 1 .

To determine

To prove:

Show that cnn2 for all integers n1.

Explanation

Given information:

Define a sequence c1,c2,c3,...., recursively as follows:

c1=0ck=2ck/2+k, for all integers k2.

Proof:

PROOF BY STRONG INDUCTION:

Let P(n) be "cnn2"

Basis step: n = 1

cn=c1=01=12=n2

Thus P (1) is true.

INDUCTIVE STEP:

Let P(1),P(2),...,P(k) be true, thus ci=i2 for i=1,2,...,k and let k2.

We need to prove that P(k+1) is true.

First case: k odd

Since k is odd, k + 1 is even and thus (k+1)/2 is an integer.

ck+1=2c(k+1)/2+k                                  ck=2ck/2+k

=2c(k+1)/2+2                                (k+1)/2 is an integer

2(( k+1)/2)2+2                         P((k+1)/2) is true

=2( k+1)24+2

=k2+2k+12+2                             (a+b)2=a2+2ab+b2

=k22+k+32

k22+k22+32                                         2kk2 when k2

=k2+32

k2+2             &

Still sussing out bartleby?

Check out a sample textbook solution.

See a sample solution

The Solution to Your Study Problems

Bartleby provides explanations to thousands of textbook problems written by our experts, many with advanced degrees!

Get Started

Chapter 11 Solutions

Show all chapter solutions add
Sect-11.1 P-5ESSect-11.1 P-6ESSect-11.1 P-7ESSect-11.1 P-8ESSect-11.1 P-9ESSect-11.1 P-10ESSect-11.1 P-11ESSect-11.1 P-12ESSect-11.1 P-13ESSect-11.1 P-14ESSect-11.1 P-15ESSect-11.1 P-16ESSect-11.1 P-17ESSect-11.1 P-18ESSect-11.1 P-19ESSect-11.1 P-20ESSect-11.1 P-21ESSect-11.1 P-22ESSect-11.1 P-23ESSect-11.1 P-24ESSect-11.1 P-25ESSect-11.1 P-26ESSect-11.1 P-27ESSect-11.1 P-28ESSect-11.2 P-1TYSect-11.2 P-2TYSect-11.2 P-3TYSect-11.2 P-4TYSect-11.2 P-5TYSect-11.2 P-6TYSect-11.2 P-1ESSect-11.2 P-2ESSect-11.2 P-3ESSect-11.2 P-4ESSect-11.2 P-5ESSect-11.2 P-6ESSect-11.2 P-7ESSect-11.2 P-8ESSect-11.2 P-9ESSect-11.2 P-10ESSect-11.2 P-11ESSect-11.2 P-12ESSect-11.2 P-13ESSect-11.2 P-14ESSect-11.2 P-15ESSect-11.2 P-16ESSect-11.2 P-17ESSect-11.2 P-18ESSect-11.2 P-19ESSect-11.2 P-20ESSect-11.2 P-21ESSect-11.2 P-22ESSect-11.2 P-23ESSect-11.2 P-24ESSect-11.2 P-25ESSect-11.2 P-26ESSect-11.2 P-27ESSect-11.2 P-28ESSect-11.2 P-29ESSect-11.2 P-30ESSect-11.2 P-31ESSect-11.2 P-32ESSect-11.2 P-33ESSect-11.2 P-34ESSect-11.2 P-35ESSect-11.2 P-36ESSect-11.2 P-37ESSect-11.2 P-38ESSect-11.2 P-39ESSect-11.2 P-40ESSect-11.2 P-41ESSect-11.2 P-42ESSect-11.2 P-43ESSect-11.2 P-44ESSect-11.2 P-45ESSect-11.2 P-46ESSect-11.2 P-47ESSect-11.2 P-48ESSect-11.2 P-49ESSect-11.2 P-50ESSect-11.2 P-51ESSect-11.3 P-1TYSect-11.3 P-2TYSect-11.3 P-3TYSect-11.3 P-1ESSect-11.3 P-2ESSect-11.3 P-3ESSect-11.3 P-4ESSect-11.3 P-5ESSect-11.3 P-6ESSect-11.3 P-7ESSect-11.3 P-8ESSect-11.3 P-9ESSect-11.3 P-10ESSect-11.3 P-11ESSect-11.3 P-12ESSect-11.3 P-13ESSect-11.3 P-14ESSect-11.3 P-15ESSect-11.3 P-16ESSect-11.3 P-17ESSect-11.3 P-18ESSect-11.3 P-19ESSect-11.3 P-20ESSect-11.3 P-21ESSect-11.3 P-22ESSect-11.3 P-23ESSect-11.3 P-24ESSect-11.3 P-25ESSect-11.3 P-26ESSect-11.3 P-27ESSect-11.3 P-28ESSect-11.3 P-29ESSect-11.3 P-30ESSect-11.3 P-31ESSect-11.3 P-32ESSect-11.3 P-33ESSect-11.3 P-34ESSect-11.3 P-35ESSect-11.3 P-36ESSect-11.3 P-37ESSect-11.3 P-38ESSect-11.3 P-39ESSect-11.3 P-40ESSect-11.3 P-41ESSect-11.3 P-42ESSect-11.3 P-43ESSect-11.4 P-1TYSect-11.4 P-2TYSect-11.4 P-3TYSect-11.4 P-4TYSect-11.4 P-5TYSect-11.4 P-1ESSect-11.4 P-2ESSect-11.4 P-3ESSect-11.4 P-4ESSect-11.4 P-5ESSect-11.4 P-6ESSect-11.4 P-7ESSect-11.4 P-8ESSect-11.4 P-9ESSect-11.4 P-10ESSect-11.4 P-11ESSect-11.4 P-12ESSect-11.4 P-13ESSect-11.4 P-14ESSect-11.4 P-15ESSect-11.4 P-16ESSect-11.4 P-17ESSect-11.4 P-18ESSect-11.4 P-19ESSect-11.4 P-20ESSect-11.4 P-21ESSect-11.4 P-22ESSect-11.4 P-23ESSect-11.4 P-24ESSect-11.4 P-25ESSect-11.4 P-26ESSect-11.4 P-27ESSect-11.4 P-28ESSect-11.4 P-29ESSect-11.4 P-30ESSect-11.4 P-31ESSect-11.4 P-32ESSect-11.4 P-33ESSect-11.4 P-34ESSect-11.4 P-35ESSect-11.4 P-36ESSect-11.4 P-37ESSect-11.4 P-38ESSect-11.4 P-39ESSect-11.4 P-40ESSect-11.4 P-41ESSect-11.4 P-42ESSect-11.4 P-43ESSect-11.4 P-44ESSect-11.4 P-45ESSect-11.4 P-46ESSect-11.4 P-47ESSect-11.4 P-48ESSect-11.4 P-49ESSect-11.4 P-50ESSect-11.4 P-51ESSect-11.5 P-1TYSect-11.5 P-2TYSect-11.5 P-3TYSect-11.5 P-4TYSect-11.5 P-5TYSect-11.5 P-1ESSect-11.5 P-2ESSect-11.5 P-3ESSect-11.5 P-4ESSect-11.5 P-5ESSect-11.5 P-6ESSect-11.5 P-7ESSect-11.5 P-8ESSect-11.5 P-9ESSect-11.5 P-10ESSect-11.5 P-11ESSect-11.5 P-12ESSect-11.5 P-13ESSect-11.5 P-14ESSect-11.5 P-15ESSect-11.5 P-16ESSect-11.5 P-17ESSect-11.5 P-18ESSect-11.5 P-19ESSect-11.5 P-20ESSect-11.5 P-21ESSect-11.5 P-22ESSect-11.5 P-23ESSect-11.5 P-24ESSect-11.5 P-25ESSect-11.5 P-26ES