   Chapter 11.5, Problem 24E

Chapter
Section
Textbook Problem

# Using Parametric and Symmetric EquationsIn Exercises 25–28, find the coordinates of a point P on the line and a vector v parallel to the line. x + 3 5 = y 8 = z − 3 6

To determine

To calculate: Find The coordinates of a point P on the line and the vector v parallel to the line x+35=y8=z36.

Explanation

Given:

The equations of the lineare:

x+35=y8=z36

Formula used:

The symmetric equations of a line are:

xx1a=yy1b=zz1c

Calculation:

As we know formula for symmetric equations of a line, x1,y1 and z1 are the coordinates of the point through which line is passing

Also denominators, that is a,b, and c are the parallel direction numbers to that line.

Equations for the line are,

x+35=y8=z36

Standard symmetric equations of a lineare,

xx1a=yy1b=zz

### Still sussing out bartleby?

Check out a sample textbook solution.

See a sample solution

#### The Solution to Your Study Problems

Bartleby provides explanations to thousands of textbook problems written by our experts, many with advanced degrees!

Get Started

#### Sketch the graph of y=x24.

Calculus: An Applied Approach (MindTap Course List)

#### 27. Maximize subject to

Mathematical Applications for the Management, Life, and Social Sciences

#### True or False: By the Integral Test, converges.

Study Guide for Stewart's Single Variable Calculus: Early Transcendentals, 8th 