Mechanics of Materials, 7th Edition
Mechanics of Materials, 7th Edition
7th Edition
ISBN: 9780073398235
Author: Ferdinand P. Beer, E. Russell Johnston Jr., John T. DeWolf, David F. Mazurek
Publisher: McGraw-Hill Education
bartleby

Videos

Textbook Question
Book Icon
Chapter 11.9, Problem 103P

11.103 and 11.104 Each member of the truss shown is made of steel and has a cross-sectional area of 500 mm2. Using E = 200 GPa, determine the deflection indicated.

11.103 Vertical deflection of joint B.

11.104 Horizontal deflection of joint B.

Chapter 11.9, Problem 103P, 11.103 and 11.104 Each member of the truss shown is made of steel and has a cross-sectional area of

Fig. P11.103 and P11.104

Expert Solution & Answer
Check Mark
To determine

Calculate the vertical deflection of joint B (δB).

Answer to Problem 103P

The vertical deflection of joint B (δB) is 0.1459mm_.

Explanation of Solution

Given information:

The Young’s modulus of the steel (E) is 200GPa.

The area of the each member (A) is 500mm2.

The vertical load act at the joint C (P) is 4.8kN.

The length of the member AD (LAD) is 2.4m.

The length of the member CD (LCD) is 2.5m.

Calculation:

Consider the vertical force (Q) at joint B.

Show the free body diagram of the truss members as in Figure 1.

Mechanics of Materials, 7th Edition, Chapter 11.9, Problem 103P , additional homework tip  1

Refer to Figure 1.

Calculate the length of the member AB (LAB):

LAB=1.22+1.62=2m×103mm1m=2×103mm

The length of the member BD (LBD):

LBD=LAB=2×103mm

The length of the member AD (LAD):

LAD=2.4m×103mm1m=2.4×103mm

The length of the member CD (LCD):

LCD=2.5m×103mm1m=2.5×103mm

Calculate the length of the member BC (LBC):

LBC=1.22+(2.51.6)2=1.5m×103mm1m=1.5×103mm

Show the diagram of the joint C as in Figure 2.

Mechanics of Materials, 7th Edition, Chapter 11.9, Problem 103P , additional homework tip  2

Here, FBC is the force act at the member BC and FCD is the force act at the member CD.

Refer to Figure 2.

Calculate the horizontal forces by applying the equation of equilibrium:

Sum of horizontal forces is equal to 0.

Fx=035FBC+FCD=0 (1)

Calculate the vertical forces by applying the equation of equilibrium:

Sum of vertical forces is equal to 0.

Fy=045FBC4.8=045FBC=4.8

FBC=4.8×54FBC=6kN

Calculate the force act at the member CD (FCD):

Substitute 6kN for FBC in Equation (1).

35(6)+FCD=0FCD=3×65FCD=3.6kN

Show the diagram of the joint B as in Figure 3.

Mechanics of Materials, 7th Edition, Chapter 11.9, Problem 103P , additional homework tip  3

Here, FAB is the force act at the member AB and FBD is the force act at the member BD.

Refer to Figure 3.

Calculate the horizontal forces by applying the equation of equilibrium:

Sum of horizontal forces is equal to 0.

Fx=045FAB+45FBD3.6=045FAB+45FBD=3.6 (2)

Calculate the vertical forces by applying the equation of equilibrium:

Sum of vertical forces is equal to 0.

Fy=035FAB35FBD4.8Q=035(FABFBD)=4.8+Q

FABFBD=(4.8+Q)×53FAB=8+53Q+FBD

Calculate the force act at the member BD (FBD):

Substitute (8+53Q+FBD) for FAB in Equation (2).

45(8+53Q+FBD)+45FBD=3.66.4+43Q+45FBD+45FBD=3.685FBD=3.66.443Q85FBD=2.843Q

FBD=(2.843Q)×58FBD=7456Q

Calculate the force act at the member AB (FAB):

Substitute (7456Q) for FBD in Equation (2).

45FAB+45(7456Q)=3.645FAB7523Q=3.645FAB=3.6+75+23Q

FAB=(5+23Q)×54FAB=254+56Q

Show the diagram of the joint D as in Figure 4.

Mechanics of Materials, 7th Edition, Chapter 11.9, Problem 103P , additional homework tip  4

Here, FAD is the force act at the member AD.

Refer to Figure 4.

Calculate the vertical forces by applying the equation of equilibrium:

Sum of vertical forces is equal to 0.

Fy=035FBD+FAD=0FAD=35FBD (3)

Calculate the force act at the member AD (FAD):

Substitute (7456Q) for FBD in Equation (3).

FAD=35(7456Q)FAD=2120+12Q

Partial differentiate the force act at the member AB (FAB) with respect to Q.

FABQ=0+56=56

Calculate the deflection of the member AB (δAB) using the formula:

δAB=FABLABAE×FABQ

Substitute (254+56Q) for FAB, 2×103mm for LAB, 500mm2, for A, 200GPa for E, and 56 for FABQ

δAB=(254+56Q)×2×103500×200GPa×1kN/mm21GPa×56=548+172Q

Partial differentiate the force act at the member AD (FAD) with respect to Q.

FADQ=0+12=12

Calculate the deflection of the member AD (δAD) using the formula:

δAD=FADLADAE×FADQ

Substitute (2120+12Q) for FAD, 2.4×103mm for LAD, 500mm2, for A, 200GPa for E, and 12 for FADQ.

δAD=(2120+12Q)×2.4×103500×200GPa×1kN/mm21GPa×12=635,000+3500Q

Partial differentiate the force act at the member BD (FBD) with respect to Q.

FBDQ=056=56

Calculate the strain energy of the member BD (δBD) using the formula:

δBD=FBDLBDAE×FBDQ

Substitute (7456Q) for FBD, 2×103mm for LBD, 500mm2, for A, 200GPa for E, and (56) for FBDQ.

δBD=(7456Q)×2×103500×200GPa×1kN/mm21GPa×(56)=7240+172Q

Partial differentiate the force act at the member BC (FBC) with respect to Q.

FBCQ=0

Calculate the strain energy of the member BC (δBC) using the formula:

δBC=FBCLBCAE×FBCQ

Substitute 6kN for FBC, 1.5×103mm for LBC, 500mm2, for A, 200GPa for E, and 0 for FBCQ.

δBC=6×1.5×103500×200GPa×1kN/mm21GPa×0=0

Partial differentiate the force act at the member CD (FCD) with respect to Q.

FCDQ=0

Calculate the strain energy of the member CD (δCD) using the formula:

δCD=FCDLCDAE×FCDQ

Substitute (3.6kN) for FBC, 2.5×103mm for LBC, 500mm2, for A, 200GPa for E, and 0 for FBCQ.

δBC=3.6×2.5×103500×200GPa×1kN/mm21GPa×0=0

Calculate the vertical deflection of joint B (δB):

δB=δAB+δAD+δBD+δBC+δCD

Substitute (548+172Q) for δAB, (635,000+3500Q) for δAD, (7240+172Q) for δBD, 0 for δBC, and 0 for δCD.

δB=[(548+172Q)+(635,000+3500Q)+(7240+172Q)+0+0]=0.14590.0338Q

Substitute 0 for Q.

δB=0.14590.0338(0)=0.1459mm

Hence the vertical deflection of joint B (δB) is 0.1459mm_.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
The rod ABC is made of an aluminum for which E = 71.4 GPa. Knowing that P = 7.94 kNand Q = 49.88 kN,determine the deflection (in μm) of point B if y = 0.47 and z = 0.54. Round off the final answer in four decimal places.
Three bars, two made of aluminum and one made of steel, support a rigid block. An object of weight W is dropped vertically from a distance h above the rigid block. Both steel and aluminum bars have cross-sectional area of 50 mm2 and length of 0.5 m. The elastic moduli for the aluminum and steel are 76 GPa and 184 GPa, respectively. a) If W=1000N and h=0.1m, determine whether the three bars are still safe to perform. b) If h=0.2m, determine the maximum weight that can be dropped without causing failure to the bars
The length of the 332332 -in.-diameter steel wire CD has been adjusted so that with no load applied, a gap of 116116 in. exists between the end B of the rigid beam ACB and contact point E. Knowing that E = 29 × 106 psi, determine where a 57-lb (w) block should be placed on the beam in order to cause contact between B and E. For contact, x <  in.

Chapter 11 Solutions

Mechanics of Materials, 7th Edition

Ch. 11.3 - A 30-in. length of aluminum pipe of...Ch. 11.3 - A single 6-mm-diameter steel pin B is used to...Ch. 11.3 - Prob. 13PCh. 11.3 - Prob. 14PCh. 11.3 - The assembly ABC is made of a steel for which E =...Ch. 11.3 - Show by integration that the strain energy of the...Ch. 11.3 - Prob. 17PCh. 11.3 - Prob. 18PCh. 11.3 - Prob. 19PCh. 11.3 - 11.18 through 11.21 In the truss shown, all...Ch. 11.3 - Prob. 21PCh. 11.3 - Each member of the truss shown is made of aluminum...Ch. 11.3 - Each member of the truss shown is made of aluminum...Ch. 11.3 - 11.24 through 11.27 Taking into account only the...Ch. 11.3 - Prob. 25PCh. 11.3 - 11.24 through 11.27 Taking into account only the...Ch. 11.3 - 11.24 through 11.27 Taking into account only the...Ch. 11.3 - Prob. 28PCh. 11.3 - Prob. 29PCh. 11.3 - Prob. 30PCh. 11.3 - 11.30 and 11.31 Using E = 200 GPa, determine the...Ch. 11.3 - Assuming that the prismatic beam AB has a...Ch. 11.3 - Prob. 33PCh. 11.3 - The design specifications for the steel shaft AB...Ch. 11.3 - Show by integration that the strain energy in the...Ch. 11.3 - The state of stress shown occurs in a machine...Ch. 11.3 - Prob. 37PCh. 11.3 - The state of stress shown occurs in a machine...Ch. 11.3 - Prob. 39PCh. 11.3 - Prob. 40PCh. 11.3 - Prob. 41PCh. 11.5 - A 5-kg collar D moves along the uniform rod AB and...Ch. 11.5 - The 18-lb cylindrical block E has a horizontal...Ch. 11.5 - The cylindrical block E has a speed v0 =16 ft/s...Ch. 11.5 - Prob. 45PCh. 11.5 - Prob. 46PCh. 11.5 - The 48-kg collar G is released from rest in the...Ch. 11.5 - Prob. 48PCh. 11.5 - Prob. 49PCh. 11.5 - Prob. 50PCh. 11.5 - Prob. 51PCh. 11.5 - The 2-kg block D is dropped from the position...Ch. 11.5 - The 10-kg block D is dropped from a height h = 450...Ch. 11.5 - Prob. 54PCh. 11.5 - A 160-lb diver jumps from a height of 20 in. onto...Ch. 11.5 - Prob. 56PCh. 11.5 - A block of weight W is dropped from a height h...Ch. 11.5 - 11.58 and 11.59 Using the method of work and...Ch. 11.5 - 11.58 and 11.59 Using the method of work and...Ch. 11.5 - 11.60 and 11.61 Using the method of work and...Ch. 11.5 - 11.60 and 11.61 Using the method of work and...Ch. 11.5 - 11.62 and 11.63 Using the method of work and...Ch. 11.5 - 11.62 and 11.63 Using the method of work and...Ch. 11.5 - Using the method of work and energy, determine the...Ch. 11.5 - Using the method of work and energy, determine the...Ch. 11.5 - The 20-mm diameter steel rod BC is attached to the...Ch. 11.5 - Torques of the same magnitude T are applied to the...Ch. 11.5 - Prob. 68PCh. 11.5 - The 20-mm-diameter steel rod CD is welded to the...Ch. 11.5 - The thin-walled hollow cylindrical member AB has a...Ch. 11.5 - 11.71 and 11.72 Each member of the truss shown has...Ch. 11.5 - 11.71 and 11.72 Each member of the truss shown has...Ch. 11.5 - Each member of the truss shown is made of steel...Ch. 11.5 - Each member of the truss shown is made of steel....Ch. 11.5 - Each member of the truss shown is made of steel...Ch. 11.5 - The steel rod BC has a 24-mm diameter and the...Ch. 11.9 - 11.77 and 11.78 Using the information in Appendix...Ch. 11.9 - 11.77 and 11.78 Using the information in Appendix...Ch. 11.9 - 11.79 through 11.82 For the beam and loading...Ch. 11.9 - 11.79 through 11.82 For the beam and loading...Ch. 11.9 - 11.79 through 11.82 For the beam and loading...Ch. 11.9 - 11.79 through 11.82 For the beam and loading...Ch. 11.9 - 11.83 through 11.85 For the prismatic beam shown,...Ch. 11.9 - 11.83 through 11.85 For the prismatic beam shown,...Ch. 11.9 - 11.83 through 11.85 For the prismatic beam shown,...Ch. 11.9 - 11.86 through 11.88 For the prismatic beam shown,...Ch. 11.9 - 11.86 through 11.88 For the prismatic beam shown,...Ch. 11.9 - 11.86 through 11.88 For the prismatic beam shown,...Ch. 11.9 - For the prismatic beam shown, determine the slope...Ch. 11.9 - For the prismatic beam shown, determine the slope...Ch. 11.9 - For the beam and loading shown, determine the...Ch. 11.9 - For the beam and loading shown, determine the...Ch. 11.9 - 11.93 and 11.94 For the beam and loading shown,...Ch. 11.9 - 11.93 and 11.94 For the beam and loading shown,...Ch. 11.9 - For the beam and loading shown, determine the...Ch. 11.9 - For the beam and loading shown, determine the...Ch. 11.9 - Prob. 97PCh. 11.9 - For the beam and loading shown, determine the...Ch. 11.9 - 11.99 and 11.100 For the truss and loading shown,...Ch. 11.9 - 11.99 and 11.100 For the truss and loading shown,...Ch. 11.9 - 11.101 and 11.102 Each member of the truss shown...Ch. 11.9 - 11.101 and 11.102 Each member of the truss shown...Ch. 11.9 - 11.103 and 11.104 Each member of the truss shown...Ch. 11.9 - 11.103 and 11 104 Each member of the truss shown...Ch. 11.9 - A uniform rod of flexural rigidity EI is bent and...Ch. 11.9 - For the uniform rod and loading shown and using...Ch. 11.9 - For the beam and loading shown and using...Ch. 11.9 - Two rods AB and BC of the same flexural rigidity...Ch. 11.9 - Three rods, each of the same flexural rigidity EI,...Ch. 11.9 - Three rods, each of the same flexural rigidity EI,...Ch. 11.9 - 11.111 through 11.115 Determine the reaction at...Ch. 11.9 - 11.111 through 11.115 Determine the reaction at...Ch. 11.9 - 11.111 through 11.115 Determine the reaction at...Ch. 11.9 - 11.111 through 11.115 Determine the reaction at...Ch. 11.9 - 11.111 through 11.115 Determine the reaction at...Ch. 11.9 - For the uniform beam and loading shown, determine...Ch. 11.9 - 11.117 through 11.120 Three members of the same...Ch. 11.9 - 11.117 through 11.120 Three members of the same...Ch. 11.9 - 11.117 through 11.120 Three members of the same...Ch. 11.9 - 11.117 through 11.120 Three members of the same...Ch. 11.9 - 11.121 and 11.122 Knowing that the eight members...Ch. 11.9 - 11.121 and 11.122 Knowing that the eight members...Ch. 11 - Rod AB is made of a steel for which the yield...Ch. 11 - Each member of the truss shown is made of steel...Ch. 11 - The ship at A has just started to drill for oil on...Ch. 11 - Collar D is released from rest in the position...Ch. 11 - Each member of the truss shown is made of steel...Ch. 11 - A block of weight W is placed in contact with a...Ch. 11 - Two solid steel shafts are connected by the gears...Ch. 11 - A 160-lb diver jumps from a height of 20 in. onto...Ch. 11 - For the prismatic beam shown, determine the slope...Ch. 11 - A disk of radius a has been welded to end B of the...Ch. 11 - A uniform rod of flexural rigidity EI is bent and...Ch. 11 - The steel bar ABC has a square cross section of...
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
International Edition---engineering Mechanics: St...
Mechanical Engineering
ISBN:9781305501607
Author:Andrew Pytel And Jaan Kiusalaas
Publisher:CENGAGE L
Mechanical SPRING DESIGN Strategy and Restrictions in Under 15 Minutes!; Author: Less Boring Lectures;https://www.youtube.com/watch?v=dsWQrzfQt3s;License: Standard Youtube License