BuyFindarrow_forward

Chemistry

9th Edition
Steven S. Zumdahl
ISBN: 9781133611097

Solutions

Chapter
Section
BuyFindarrow_forward

Chemistry

9th Edition
Steven S. Zumdahl
ISBN: 9781133611097
Textbook Problem

Consider the hypothetical reaction A2(g) + B2(g) ⟶ 2AB(g), where the rate law is:

Δ [ A 2 ] Δ t = k [ A 2 ] [ B 2 ]

The value of the rate constant at 302°C is 2.45 × 10−4 L/mol s, and at 508°C the rate constant is 0.891 L/mol·  s. What is the activation energy for this reaction? What is the value of the rate constant for this reaction at 375°C?

Interpretation Introduction

Interpretation: For the given hypothetical reaction, the value of activation energy and at 375°C the value of rate constant is to be calculated

Concept introduction: Rate constant is a proportionality coefficient that relates the rate of any chemical reaction at a specific temperature to the concentration of the reactant or the concentration of the product.

The value of the rate constant is determined with the help of Arrhenius equation.

Arrhenius equation is a mathematical relation between rate constant, activation energy and the temperature.

With the help of activation energy the value of rate constant is determined.

To determine: The value of activation energy;and the value of rate constant at 375°C for the given hypothetical reaction.

Explanation

Explanation

Given

The reaction is given as,

A2(g)+B2(g)2AB(g)

At the temperature 302°C the value of rate constant is 2.45×104L/mols .

At the temperature 508°C the value of rate constant is 0.891L/mols .

The given temperature is 375°C on which the rate constant is to be determined.

The temperature 302°C is assumed to be T1 .

The temperature 508°C is assumed to be T2 .

At the temperature T1 rate constant is known as k1 .

At the temperature T2 rate constant is known as k2 .

The conversion of temperature from degree Celsius do Kelvin is given by the formula,

x°C=(273+x)K

Where,

  • x is the temperature in degree Celsius.

Substitute the values of T1 and T2 in the above formula.

For T1, ,

x°C=(273+x)K=273+302=575K

For T2 ,

x°C=(273+x)K=273+508=781K

The activation energy for the reaction is given by the Arrhenius equation,

lnk2k1=EaR[T2T1T1T2]

Where,

  • k1,k2 are the rate constants at different temperatures.
  • Ea is the activation energy.
  • R is the gas constant and it has the value 8.314JK1mol .
  • T1,T2 are the temperatures.

Substitute the values of temperatures with their respective rate constants.

lnk2k1=EaR[T2T1T1T2]ln0.8912.450×104=Ea8.314JK1mol1[(781575)K(781×575)K2]8

Still sussing out bartleby?

Check out a sample textbook solution.

See a sample solution

The Solution to Your Study Problems

Bartleby provides explanations to thousands of textbook problems written by our experts, many with advanced degrees!

Get Started

Chapter 12 Solutions

Show all chapter solutions add

Additional Science Solutions

Find more solutions based on key concepts

Show solutions add

Which of the following is fare) rich source(s) of vitamin E7 raw vegetable oil colorful foods, such as carrots ...

Nutrition: Concepts and Controversies - Standalone book (MindTap Course List)

Why are titanium oxide features visible in the spectra of only the coolest stars?

Horizons: Exploring the Universe (MindTap Course List)

23. Name each compound:

Chemistry In Focus

Given two particles with 2.00-C charges as shown in Figure P25.19 and a particle with charge q = 1.28 10-18 C ...

Physics for Scientists and Engineers, Technology Update (No access codes included)