
Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 12, Problem 10P
GO The system in Fig. 12-28 is in equilibrium, with the siring in the center exactly horizontal. Block A weighs 40 N, block B weighs 50 N, and angle ϕ is 35°. Find (a) tension T1, (b) tension T2, (c) tension T3 and (d) angle θ.
Figure 12-28 Problem 10.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
A small ball of mass M is attached to the end of a uniform rod of equal mass M and length L that is pivoted at the top (see figure below).
P
Pivot
M
i
(a) Determine the tension in the rod at the pivot. (Use the following as necessary: M, g, L, and y.)
F
pivot =
2.M.g
(b) Determine the tension in the rod at the point P when the system is stationary. (Use the following as necessary: M, g, L, and y.)
Fp
=
M.g.
·(1+ ž)
(c) Calculate the period of oscillation for small displacements from equilibrium. (Use the following as necessary: M, g, L, and y.)
T= 4.
Π
3
L
2.
g
(d) Determine this period (in s) for L = 2.08 m.
1.93
Your response differs from the correct answer by more than 10%. Double check your calculations. s
(e) What If? What is the percentage difference between the period of this system compared to the period of a simple pendulum in which a ball of mass M is pivoted at the end of a massless rod of length L?
simple x 100% 33.4
Tsystem T
simple
× %
An electron with kinetic energy K is traveling along the
positive x-axis, which is along the axis of a cathode-ray tube,
as shown in the figure. There is an electric field
E = 15.0 × 104 N/C pointed in the positive y-direction
between the deflection plates, which are 0.0600 m long and
are separated by 0.0200 m.
Determine the minimum kinetic energy Kmin the electron can
have and still avoid colliding with one of the plates.
Kmin
=
12
Ē
L
d
x
J
A small 2.85 g plastic ball that has a charge q = 1.75 C is
suspended by a string that has a length L = 1.00 m in a
uniform electric field, as shown in the figure.
If the ball is in equilibrium when the string makes a
0 = 9.80° angle with the vertical, what is the electric field
strength E?
| L
E =
N/C
|
Ꮎ
q
Ē
Chapter 12 Solutions
Fundamentals of Physics Extended
Ch. 12 - Figure 12-15 shows three situations in which the...Ch. 12 - In Fig, 12-16, a rigid beam is attached to two...Ch. 12 - Figure 12-17 shows four overhead views of rotating...Ch. 12 - A ladder leans against a frictionless wall but is...Ch. 12 - Figure 12-18 shows a mobile of toy penguins...Ch. 12 - Figure 12-19 shows an overhead view of a uniform...Ch. 12 - In Fig. 12-20, a stationary 5 kg rod AC is held...Ch. 12 - Three piatas hang from the stationary assembly of...Ch. 12 - In Fig. 12-22, a vertical rend is hinged at its...Ch. 12 - Figure 12-23 shows a horizontal block that is...
Ch. 12 - The table gives the initial lengths of three reds...Ch. 12 - A physical therapist gone wild has constructed the...Ch. 12 - Prob. 1PCh. 12 - An automobile with a mass of 1360 kg has 3.05 m...Ch. 12 - SSM WWWIn Fig. 12-26, a uniform sphere of mass m =...Ch. 12 - An archers bow is drawn at its midpoint until the...Ch. 12 - ILWA rope of negligible mass is stretched...Ch. 12 - A scaffold of mass 60 kg and Length 5.0 m is...Ch. 12 - A 75 kg window cleaner uses a 10 kg ladder that is...Ch. 12 - A physics Brady Bunch, whose weights in newtons...Ch. 12 - SSMA meter stick balances horizontally on a...Ch. 12 - GO The system in Fig. 12-28 is in equilibrium,...Ch. 12 - SSMFigure 12-29 shows a diver of weight 580 N...Ch. 12 - In Fig. 12-30, trying to gel his car out of mud, a...Ch. 12 - Figure 12-31 shows the anatomical structures in...Ch. 12 - In Fig. 12-32, a horizontal scaffold, of length...Ch. 12 - ILWForces F1, F2 and F3 act on the structure of...Ch. 12 - A uniform cubical crate is 0.750 m on each side...Ch. 12 - In Fig. 12-34, a uniform beam of weight 500 N and...Ch. 12 - GO In Fig. 12-35, horizontal scaffold 2, with...Ch. 12 - To crack a certain nut in a nutcracker, forces...Ch. 12 - A bowler holds a bowling ball M = 7.2 kg in the...Ch. 12 - ILWThe system in Fig. 12-38 is in equilibrium. A...Ch. 12 - GO In Fig-12-39, a 55 kg rock climber is in a...Ch. 12 - GO In Fig. 12-40, one end of a uniform beam of...Ch. 12 - GO In Fig. 12-41, a climber with a weight of 533.8...Ch. 12 - SSM WWWIn Fig. 12-42, what magnitude of constant...Ch. 12 - GO In Fig. 12-43, a climber leans out against a...Ch. 12 - GO In Fig. 12-44, a 15 kg block is held in place...Ch. 12 - GO In Fig. 12-45, suppose the length L of the...Ch. 12 - A door has a height of 2.1 m along a y axis that...Ch. 12 - GO In Fig. 12-46, a 50.0 kg uniform square sign,...Ch. 12 - GO In Fig. 12-47, a nonuniform bar is suspended at...Ch. 12 - In Fig. 12-48, the driver of a car on a horizontal...Ch. 12 - Figure 12-49a shows a vertical uniform beam of...Ch. 12 - In Fig. 12-45, a thin horizontal bar AB of...Ch. 12 - SSM WWWA cubical box is filled with sand and...Ch. 12 - Figure 12-50 shows a 70 kg climber hanging by only...Ch. 12 - GO In Fig. 12-51, a uniform plank, with a length L...Ch. 12 - In Fig, 12-52, uniform beams A and B are attached...Ch. 12 - For the stepladder shown in Fig. 12-53, sides AC...Ch. 12 - Figure 12-54a shows a horizontal uniform beam of...Ch. 12 - A crate, in the form of a cube with edge lengths...Ch. 12 - In Fig. 12-7 and the associated sample problem,...Ch. 12 - SSM ILWA horizontal aluminum rod 4.8 cm in...Ch. 12 - Figure 12-55 shows the stressstrain curve for a...Ch. 12 - In Fig. 12-56, a lead brick rests horizontally on...Ch. 12 - Figure 12-57 shows an approximate plot of stress...Ch. 12 - A tunnel of length L = 150 m, height H = 7.2 m,...Ch. 12 - Figure 12-59 shows the stress versus strain plot...Ch. 12 - GO In Fig. 12-60, a 103kg uniform log hangs by two...Ch. 12 - GO Figure 12-61 represents an insect caught at the...Ch. 12 - GO Figure 12-62 is an overhead view of a rigid rod...Ch. 12 - After a fall, a 95 kg rock climber finds himself...Ch. 12 - SSMIn Fig 12-63, a rectangular slab of slate rests...Ch. 12 - A uniform ladder whose length is 5.0 m and whose...Ch. 12 - SSM In Fig. 12-64, block A mass 10 kg is in...Ch. 12 - Figure 12-65a shows a uniform ramp between two...Ch. 12 - GO In Fig. 12-66, a 10 kg sphere is supported on a...Ch. 12 - In Fig. 12-67a, a uniform 40.0 kg beam is centered...Ch. 12 - SSM In Fig. 12-68, an 817 kg construction bucket...Ch. 12 - In Fig. 12-69, a package of mass m hangs from a...Ch. 12 - ILWThe force F in Fig. 12-70 keeps the 6.40 kg...Ch. 12 - A mine elevator is supported by a single steel...Ch. 12 - Four bricks of length L, identical and uniform,...Ch. 12 - Prob. 64PCh. 12 - In Fig. 12-73, a uniform beam with a weight of 60...Ch. 12 - A uniform beam is 5.0 m long and has a mass of 53...Ch. 12 - A solid copper cube has an edge length of 85.5 cm....Ch. 12 - A construction worker attempts to lift a uniform...Ch. 12 - SSM In Fig. 12-76, a uniform rod of mass m is...Ch. 12 - A 73 kg man stands on a level bridge of length L....Ch. 12 - SSMA uniform cube of side length 8.0 cm rests cm a...Ch. 12 - The system in Fig. 12-77 is in equilibrium. The...Ch. 12 - SSMA uniform ladder is 10 m long and weighs 200 N....Ch. 12 - A pan balance is made up of a rigid, massless rod...Ch. 12 - The rigid square frame in Fig. 12-79 consists of...Ch. 12 - A gymnast with mass 46.0 stands on the end of a...Ch. 12 - Figure 12-81 shows a 300 kg cylinder that is...Ch. 12 - In Fig. 12-82, a uniform beam of length 12.0 m is...Ch. 12 - Four bricks of length L, identical and uniform,...Ch. 12 - A cylindrical aluminum rod, with an initial length...Ch. 12 - Prob. 81PCh. 12 - If the square beam in Fig. 12-6a and the...Ch. 12 - Figure 12-84 shows a stationary arrangement of two...Ch. 12 - A makeshift swing is constructed by makings loop...Ch. 12 - Figure 12-85a shows details of a finger in the...Ch. 12 - A trap door in a ceiling is 0.91 m square, has a...Ch. 12 - A particle is acted on by forces given, in...Ch. 12 - The leaning Tower of Pisa is 59.1 m high and 7.44...
Additional Science Textbook Solutions
Find more solutions based on key concepts
The glycine cleavage system is a group of four enzymes that together catalyze the following reaction: glycine+T...
Organic Chemistry (8th Edition)
1.2 Ask two of your friends (not in class) to define the terms in problem1.1.
Do their answers agee with the d...
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
MAKE CONNECTIONS Review the description of meiosis (see Figure 10.8) and Mendels laws of segregation and indepe...
Campbell Biology in Focus (2nd Edition)
57. Which buffer system is the best choice to create a buffer with pH = 7.20? For the best system, calculate th...
Chemistry: A Molecular Approach (4th Edition)
5. When the phenotype of heterozygotes is intermediate between the phenotypes of the two homozygotes, this patt...
Biology: Life on Earth (11th Edition)
A source of electromagnetic radiation produces infrared light. Which of the following could be the wavelength ...
Chemistry: The Central Science (14th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A less than youthful 80.6 kg physics professor decides to run the 26.2 mile (42.195 km) Los Angeles Marathon. During his months of training, he realizes that one important component in running a successful marathon is carbo-loading, the consumption of a sufficient quantity of carbohydrates prior to the race that the body can store as glycogen to burn during the race. The typical energy requirement for runners is 1 kcal/km per kilogram of body weight, and each mole of oxygen intake allows for the release of 120 kcal of energy by oxidizing (burning) glycogen. (a) If the professor finishes the marathon in 5:15:00 h, what is the professor's oxygen intake rate, in liters per minute, during the race if he metabolizes all of the carbo-loaded glycogen during the race and the ambient temperature is 21.5°C? 2.02 × Read the problem statement again carefully. Is the air at standard temperature and pressure during the marathon? How would this affect the volume of 1 mol of oxygen? L/min (b) The…arrow_forwardYou are using a microscope to view a dust particle suspended in a drop of water on a microscope slide. As water molecules bombard the particle, it "jitters" about in a random motion (Brownian motion). The particle's average kinetic energy is the same as 3 that of a molecule in an ideal gas (K = The particle (assumed to be spherical) has a density of 350 kg/m³ in water at 23°C. 2 BT). (a) If the particle has a diameter d, determine an expression for its rms speed in terms of the diameter d. (Enter your answer as a multiple of d−3/2. Assume v is in m/s and d-3/2 is in m−3/2. Do not include units in your answer.) rms V. = rms rms Obtain an expression for v by equating the expression for the kinetic energy of the particle in terms of v obtain an expression for the mass of the particle in terms of its diameter. d-3/2 rms to the expression for the average kinetic energy of a molecule. Knowing the density of the particle and assuming it is a sphere, we can (b) Assuming the particle moves at a…arrow_forwardYou are watching a new bridge being built near your house. You notice during the construction that two concrete spans of the bridge of total length L; = 270 m are placed end to end so that no room is allowed for expansion (figure (a)). In the opening storyline for the thermodynamics chapter, we talked about buckling sidewalks. The same thing will happen with spans on bridges if allowance is not made for expansion (figure (b)). You want to warn the construction crew about this dangerous situation, so you calculate the height y to which the spans will rise when they buckle in response to a temperature increase of AT = 19.0°C. a b T T+AT y = Ider Enter a number. made by one span, with its thermally expanded length as the hypotenuse.arrow_forward
- An open cylinder of air has a radius of 38.0 cm and a height of 50.0 cm, as shown in figure (a). 50.0 cm Ah The air pressure is 1.00 atm and the temperature is 13.5°C. A 25.0 kg piston is then lowered onto the cylinder, forming an airtight seal, as shown in figure (b). The air inside is compressed until the piston reaches equilibrium (mechanical and thermal), and at this point the piston is a height h; from the bottom of the cylinder. Lastly, a 27.5 kg dog steps onto the piston, and the air in the cylinder again compresses, as show in figure (c). After reaching equilibrium, the air inside is again at 13.5°C, and the height of the piston decreases a distance Ah as shown. (a) What is the distance Ah (in mm) that the piston moves when the dog is on it? mm (b) To what temperature (in °C) should the gas be warmed to raise the piston and the dog back to h;? °Carrow_forwardTwo horizontal wires are joined end to end, each with a diameter of 2.000 mm. The two joined wires are connected to fixed points a total distance of 4.00000 m apart. When both wires are at a temperature of 43.0°C, each wire has an unstretched length of 2.00000 m, and the tension in each is negligible. The first wire is made of steel and extends from x = -2.00000 m to x = 0, and the second is made of brass and extends from x = 0 to x = 2.00000 m. The temperature of both wires is then lowered to 18.0°C, and the wires stay joined together as they cool. The steel wire is composed of an alloy that has an average coefficient of linear expansion of 1.10 x 10-5 (°C) -1 and a Young's modulus of 2.00 x 1011 N/m². The brass wire is composed of an alloy that has an average coefficient of linear expansion of 1.90 x 10-5 (°C)¹ and a Young's modulus of 9.10 x 10 10 N/m². (Due to the nature of this problem, do not use rounded intermediate values-including answers submitted in WebAssign-in your…arrow_forward! Required information The radius of the Moon is 1.737 Mm and the distance between Earth and the Moon is 384.5 Mm. The intensity of the moonlight incident on her eye is 0.0220 W/m². What is the intensity incident on her retina if the diameter of her pupil is 6.54 mm and the diameter of her eye is 1.94 cm? W/m²arrow_forward
- Required information An object is placed 20.0 cm from a converging lens with focal length 15.0 cm (see the figure, not drawn to scale). A concave mirror with focal length 10.0 cm is located 76.5 cm to the right of the lens. Light goes through the lens, reflects from the mirror, and passes through the lens again, forming a final image. Converging lens Object Concave mirror 15.0 cm -20.0 cm- 10.0 cm d cm d = 76.5. What is the location of the final image? cm to the left of the lensarrow_forward! Required information A man requires reading glasses with +2.15-D refractive power to read a book held 40.0 cm away with a relaxed eye. Assume the glasses are 1.90 cm from his eyes. His uncorrected near point is 1.00 m. If one of the lenses is the one for distance vision, what should the refractive power of the other lens (for close-up vision) in his bifocals be to give him clear vision from 25.0 cm to infinity? 2.98 Darrow_forward! Required information Assume that the magnifier is held close to the eye. Use the standard near point of 25.0 cm to find the angular magnification. An insect that is 4.10 mm long is placed 10.3 cm from a simple magnifier with a focal length of 13.0 cm. What is the angular magnification?arrow_forward
- 2arrow_forward3arrow_forwardImagine you are out for a stroll on a sunny day when you encounter a lake. Unpolarized light from the sun is reflected off the lake into your eyes. However, you notice when you put on your vertically polarized sunglasses, the light reflected off the lake no longer reaches your eyes. What is the angle between the unpolarized light and the surface of the water, in degrees, measured from the horizontal? You may assume the index of refraction of air is nair=1 and the index of refraction of water is nwater=1.33 . Round your answer to three significant figures. Just enter the number, nothing else.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University

Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill

College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Static Equilibrium: concept; Author: Jennifer Cash;https://www.youtube.com/watch?v=0BIgFKVnlBU;License: Standard YouTube License, CC-BY