Classical Dynamics of Particles and Systems
Classical Dynamics of Particles and Systems
5th Edition
ISBN: 9780534408961
Author: Stephen T. Thornton, Jerry B. Marion
Publisher: Cengage Learning
Question
Book Icon
Chapter 12, Problem 12.1P
To determine

The characteristic frequencies of the two coupled oscillators with all spring constants different, and to compare it with the natural frequencies of the two oscillators in the absence of coupling.

Expert Solution & Answer
Check Mark

Answer to Problem 12.1P

The characteristic frequencies of the two coupled oscillators with all spring constants different are ω+=(k1+k2+2k122M+12M(k1k2)2+4k122)1/2 and ω=(k1+k2+2k122M12M(k1k2)2+4k122)1/2. In the absence of coupling ω+>ω01 and ω<ω02 where ω01 and ω02 are the frequencies when mass m2 and m1 are held fixed respectively.

Explanation of Solution

The system of the two coupled oscillators with all spring constants different are shown in Figure 1.

Classical Dynamics of Particles and Systems, Chapter 12, Problem 12.1P

In the figure, the spring constants of the springs are marked as k1, k2, and k12.

Write the equations of motions for the system.

  Mx¨1+(k1+k12)x1k12x2=0Mx¨2+(k2+k12)x2k12x1=0}        (I)

Let us attempt the solutions of the form;

  x1(t)=B1eiωtx2(t)=B2eiωt}        (II)

Here, B1 and B2 are constants.

Use the solutions in (II) in (I).

  (k1+k12Mω2)B1k12B2=0k12B1+(k2+k12Mω2)B2=0}        (III)

The condition for obtaining a non-trivial solution is that, the determinant of the coefficients of B1 and B2 must be zero. Thus, it yields;

  [k1+(k12Mω2)][k2+(k12Mω2)]=k122        (IV)

Solve equation (IV) to get an expression for ω2.

  ω2=k1+k2+2k122M±12M(k1k2)2+4k122        (V)

Thus, the characteristic frequencies will be;

  ω+=(k1+k2+2k122M+12M(k1k2)2+4k122)1/2

  ω=(k1+k2+2k122M12M(k1k2)2+4k122)1/2

Consider the case; k1=k2=k, then equation (V) reduces to;

  ω2=(k+k12±k12)M

If the mass m2 is not moving, then the frequency of oscillation of m1 will be;

  ω012=1M(k1+k12)        (VI)

If the mass m1 is not moving, then the frequency of oscillation of m2 will be;

  ω022=1M(k2+k12)        (VII)

Comparing equation (VI) and (VII) with the two frequencies given by equation (V), it can be observed that;

  ω+2=12M[k1+k2+2k12+(k1k2)2+4k122]ω+2>12M[k1+k2+2k12+(k1k2)]ω+2>12M[2k1+2k12]ω+2>1M[k1+k12]ω+2>ω012        (VIII)

Similarly;

  ω2=12M[k1+k2+2k12(k1k2)2+4k122]ω+2<12M[k1+k2+2k12(k1k2)]ω+2<12M[2k2+2k12]ω+2<1M[k2+k12]ω+2<ω022        (IX)

From equation (IX) and (X) it is clear that;

  ω+>ω01ω<ω02

If k1>k2, then the ordering of the frequencies will be as;

  ω+>ω01>ω02>ω

Conclusion:

Therefore, the characteristic frequencies of the two coupled oscillators with all spring constants different are ω+=(k1+k2+2k122M+12M(k1k2)2+4k122)1/2 and ω=(k1+k2+2k122M12M(k1k2)2+4k122)1/2. In the absence of coupling ω+>ω01 and ω<ω02 where ω01 and ω02 are the frequencies when mass m2 and m1 are held fixed respectively.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Show,by integration that the moment of inertia of a uniform thin rod AB of mass 3m and length 4a about an axis through one end and perpendicular to the plane of the rod, is 16ma2  The rod is free to rotate in a vertical plane about a smooth horizontal axis through its end A  Find i)The raduis of gyration of the rod about an axis through A ii)The period of small oscillations of the rod about its position of stable equilibrum
What are the two applications of radius of gyration in structural engineering?
Write the equations that describe the simple harmonic motion of a particle moving uniformly around a circle of radius8​units, with linear speed 3units per second.
Knowledge Booster
Background pattern image
Similar questions
Recommended textbooks for you
Text book image
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning