Principles of Geotechnical Engineering (MindTap Course List)
Principles of Geotechnical Engineering (MindTap Course List)
9th Edition
ISBN: 9781305970939
Author: Braja M. Das, Khaled Sobhan
Publisher: Cengage Learning
Question
Book Icon
Chapter 12, Problem 12.4P

(a)

To determine

Find the drained angle of friction for the silty clay soil.

(a)

Expert Solution
Check Mark

Answer to Problem 12.4P

The drained angle of friction for the silty clay soil is 19.2°_.

Explanation of Solution

Given information:

The diameter (d) of clay sample is 63.5 mm.

The height (h) of the clay sample is 32 mm.

Calculation:

Calculate the area of specimen (A) as follows:

A=πd24

Substitute 63.5 mm for d.

A=π(63.5)24=12,661.264=3,165.32mm2(1m103mm)2=0.00316m2

Find the normal stress (σ) for Test No. 1 using the formula as follows:

σ=NA

Here, N is the normal force and A is the area of specimen.

Substitute 84N for N  and 0.00316m2 for A.

σ=840.00316=26,582.27N/m2(1kN1,000N)=26.58kN/m2

Similarly calculate the normal stress (σ) for remaining Tests as shown in Table 1.

Test noNormal force, N(N)Normal stress (σ)(kN/m2)
18426.58
216853.16
325480.38
4360113.92

Table 1

Find the shear strength (τf) of the failure for Test No. 1 as follows:

τf=SA

Substitute 28.9N for S and 0.00316m2 for A.

τf=28.90.00316=9,145.5N/m2(1kN1,000N)=9.14kN/m2

Find the angle of friction (ϕ) for Test No. 1 as follows:

ϕ=tan1(τfσ)

Substitute 26.58kN/m2 for σ and 9.14kN/m2 for τf.

ϕ=tan1(9.1426.58)=18.976°

Similarly calculate the angle of friction (ϕ) and shear strength (τf) for remaining tests as shown in Table 2.

Test noShear force, S (N)Shear strength, τf(kN/m2)Angle of friction (ϕ°)
128.99.1418.97
259.618.8619.53
389.128.1919.33
4125.339.6519.19

Table 2

Calculate the drained angle of friction (ϕ) for the silty clay soil using Table 2.

The average value of angle of friction of all tests is the drained angle of friction.

Refer to the Table 2,

Find the drained angle of friction as follows:

ϕ=18.97°+19.53°+19.33°+19.19°4=77.02°4=19.2°

Thus, the drained angle of friction for the silty clay soil is 19.2°_.

(b)

To determine

Find the shear strength of the clay in the field at location A.

(b)

Expert Solution
Check Mark

Answer to Problem 12.4P

The shear strength of the clay in the field at location A is 30.92kN/m2_.

Explanation of Solution

Given information:

The specific gravity (Gs) of silty sand is 2.69.

The specific gravity (Gs) of silty clay is 2.72.

The unit weight (γw) of water is 9.81kN/m3.

The void ratio (e) is 0.72.

The water content (w) of silty clay is 22%.

The depth (h1) of silty sand above water table is 2m.

The depth (h2) of silty sand below water table is 2.2m.

The depth (h3) of silty clay is 3.5m.

Calculation:

Calculate the dry unit weight (γd) for silty sand using the relation as follows:

γd=Gsγw1+e

Substitute 2.69 for Gs, 9.81kN/m3 for γw, and 0.72 for e.

γd=2.69×9.811+0.72=26.38891.72=15.342kN/m3

Calculate the saturated unit weight [(γsat)s] for silty sand using the relation as follows:

(γsat)s=(Gs+e)γw(1+e)

Substitute 0.72 for e, 9.81kN/m3 for γw, and 2.69 for Gs.

(γsat)s=(2.69+0.72)9.81(1+0.72)=33.4521.72=19.448kN/m3

Calculate the saturated unit weight [(γsat)c] for silty clay using the relation as follows:

(γsat)c=(1+w)Gsγw(1+wGs)

Substitute 22% for w, 2.72 for Gs, and 9.81kN/m3 for γw.

(γsat)c=(1+0.22)2.72×9.81(1+0.22×2.72)=32.551.5984=20.36kN/m3

Determine the normal stress (σA) at point A as shown below:

σA=h1×γd+h2×[(γsat)sγw]+h3×[(γsat)cγw]

Substitute 2m for h1, 15.342kN/m3 for γd, 2.2m for h2, 19.448kN/m3 for (γsat)s 9.81kN/m3 for γw, 3.5m for h3, 20.36kN/m3 for (γsat)clay.

σA=2×15.34+2.2×(19.459.81)+3.5×(20.369.81)=30.68+21.208+36.925=88.81kN/m2

Find the shear strength (τf) of the clay in the field at location A as follows:

τf=σAtanϕ

Here, ϕ is the angle of friction.

Substitute 88.81kN/m2 for σA and 19.2° for ϕ.

τf=88.81×tan19.2°=88.81×0.348=30.92kN/m2

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
A clay sample was consolidated in a triaxial cell under a backpressure of 50 kPa and cell pressure of 150 kPa. The drainage valve was then closed and the cell pressure was increased to 200 kPa when the pore pressure increased to 98 kPa. What is Skempton’s B-parameter? The above sample was then subjected to a vertical deviator stress, which was increased from zero under undrained conditions. The sample failed when the pore water pressure was 160 kPa and the deviator stress was 70 kPa. What is Skempton’s A-parameter at failure? Assuming the clay is normally consolidated, find the friction angle in terms of effective stresses.
A constant-head test was conducted on a sample of soil 15 cm long and 60 cm2 in cross-sectional area. The quantity of water collected was 50cm3 in 20 seconds under a head difference of 24 cm. Calculate the hydraulic conductivity. If the porosity of the sand is 55%, calculate the average velocity and the seepage velocity. Estimate the’ hydraulic conductivity of a similar soil with a porosity of 35% from the results of this test.
Refer to the constant-head permeability test arrangement in a two-layered soil as shown in Figure 8.2. During the test, it was seen that when a constant head of h1= 200 mm was maintained, the magnitude of h2 was 80 mm. If k1is 0.004 cm/sec, determine the value of k2 given H1 = 100 mm and H2 = 150 mm.
Knowledge Booster
Background pattern image
Similar questions
Recommended textbooks for you
Text book image
Principles of Geotechnical Engineering (MindTap C...
Civil Engineering
ISBN:9781305970939
Author:Braja M. Das, Khaled Sobhan
Publisher:Cengage Learning
Text book image
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781305081550
Author:Braja M. Das
Publisher:Cengage Learning
Text book image
Fundamentals of Geotechnical Engineering (MindTap...
Civil Engineering
ISBN:9781305635180
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning