Microelectronics: Circuit Analysis and Design
Microelectronics: Circuit Analysis and Design
4th Edition
ISBN: 9780073380643
Author: Donald A. Neamen
Publisher: McGraw-Hill Companies, The
bartleby

Videos

Question
Book Icon
Chapter 12, Problem 12.69P
To determine

To derive: The expression for the loop gain.

Expert Solution & Answer
Check Mark

Answer to Problem 12.69P

The expression for the loop gain is (gm1gm2RC2(1RE3+1RF)(1rπ3+gm3))(RC1||rπ2)[[1rπ+gm3+(1RE1+1RF)]RF(1E3+1RF)[(1RC2+1rπ3)RC2(1RE3+1RF)]+(1rπ+gm3)[1RF(1+[(1RC2+1rπ3)RC2(1RE3+1RF)]+(1rπ+gm3))]] .

Explanation of Solution

Given:

The given circuit is shown in Figure 1

  Microelectronics: Circuit Analysis and Design, Chapter 12, Problem 12.69P , additional homework tip  1

Figure 1

Calculation:

The small signal equivalent diagram for the Figure is shown in Figure 2

  Microelectronics: Circuit Analysis and Design, Chapter 12, Problem 12.69P , additional homework tip  2

Figure 2

Apply KCL at node Ve1 .

  Vπ1rπ1+gm1Vπ1=Ve1RE1+Ve1VORFVπ1[1rπ1+gm1]=Ve1[1RE1+1RF]VORF ....................(1)

Apply KCL at node Vr .

  gm1Vπ1+VrRC1||rπ2=0Vπ1=(gm1Vπ1)(RC1||rπ2) ....................(2)

The expression for the voltage VC2 is given by,

  VC2=Vπ3+VO

Apply KCL at node VC2 .

  gm2Vt+VC2RC2+Vπ3rπ3=0

Substitute Vπ3+VO and VC2 in the above equation.

  gm2Vt+Vπ3+VORC2+Vπ3rπ3=0gm2Vt+Vπ3(1RC2+1rπ3)+VORC2=0 ....................(3)

Apply KCL at node VO .

  Vπ3rπ3+gm3Vπ3=VORE3+VOVe1RFVπ3(1rπ3+gm3)+Ve1RE3=VO(1RE3+1RF)

Substitute Vπ1 for Ve1 in the above equation.

  Vπ3(1rπ3+gm3)Vπ1RE3=VO(1RE3+1RF)VO=Vπ3(1rπ3+gm3)Vπ1RE3(1RE3+1RF)

Substitute Vπ3(1rπ3+gm3)Vπ1RE3(1RE3+1RF) for VO and Vπ1 for Ve1 in equation (1).

  Vπ1[1rπ1+gm1]=Vπ1[1RE1+1RF](Vπ3(1rπ3+gm3)Vπ1RE3(1RE3+1RF))RFVπ1[1rπ1+gm1]+Vπ1[1RE1+1RF]=Vπ3(1rπ3+gm3)+Vπ1RE3RF(1RE3+1RF) ....................(4)

Substitute Vπ3(1rπ3+gm3)Vπ1RE3(1RE3+1RF) for VO in equation (3).

  gm2Vt+Vπ3(1RC2+1rπ3)+Vπ3(1rπ3+gm3)Vπ1RE3(1RE3+1RF)RC2=0Vπ3=Vπ1RFgm2VtRC2(1RE3+1RF)[(1RC2+1rπ3)RC2(1RE3+1RF)+gm3]

Substitute Vπ1RFgm2VtRC2(1RE3+1RF)[(1RC2+1rπ3)RC2(1RE3+1RF)+gm3] for Vπ3 in the above equation.

   V π1 [ 1 r π1 + g m1 ]+ V π1 [ 1 R E1 + 1 R F ]= ( V π1 R F g m2 V t R C2 ( 1 R E3 + 1 R F ) [ ( 1 R C2 + 1 r π3 ) R C2 ( 1 R E3 + 1 R F )+ g m3 ] )( 1 r π3 + g m3 )+ V π1 R E3 R F ( 1 R E3 + 1 R F )

   V π1 [ 1 r π1 + g m1 + 1 R E1 + 1 R F ][ R F ( 1 E 3 + 1 R F ) ]= V π1 R F + g m2 V t R C2 ( 1 R E3 + 1 R F )( 1 r π3 + g m3 ) [ ( 1 R C2 + 1 r π3 ) R C2 ( 1 R E3 + 1 R F )+ g m3 ]+( 1 r π + g m3 ) + V π1 R E3

   V π1 = V t ( g m2 R C2 ( 1 R E3 + 1 R F )( 1 r π3 + g m3 ) ) [ [ 1 r π + g m3 +( 1 R E1 + 1 R F ) ] R F ( 1 E 3 + 1 R F ) [ ( 1 R C2 + 1 r π3 ) R C2 ( 1 R E3 + 1 R F ) ]+( 1 r π + g m3 ) [ 1 R F ( [ 1+[ ( 1 R C2 + 1 r π3 ) R C2 ( 1 R E3 + 1 R F ) ]+( 1 r π + g m3 ) ] ) ] ] .

Substitute Vt(gm2RC2(1RE3+1RF)(1rπ3+gm3))[[1rπ+gm3+(1RE1+1RF)]RF(1E3+1RF)[(1RC2+1rπ3)RC2(1RE3+1RF)]+(1rπ+gm3)1RF([1+[(1RC2+1rπ3)RC2(1RE3+1RF)]+(1rπ+gm3)])] for Vπ1 in equation (2).

   V r = g m1 V t ( g m2 R C2 ( 1 R E3 + 1 R F )( 1 r π3 + g m3 ) )( R C1 || r π2 ) [ [ 1 r π + g m3 +( 1 R E1 + 1 R F ) ] R F ( 1 E 3 + 1 R F ) [ ( 1 R C2 + 1 r π3 ) R C2 ( 1 R E3 + 1 R F ) ]+( 1 r π + g m3 ) [ 1 R F ( [ 1+[ ( 1 R C2 + 1 r π3 ) R C2 ( 1 R E3 + 1 R F ) ]+( 1 r π + g m3 ) ] ) ] ]

   V r V t = ( g m1 g m2 R C2 ( 1 R E3 + 1 R F )( 1 r π3 + g m3 ) )( R C1 || r π2 ) [ [ 1 r π + g m3 +( 1 R E1 + 1 R F ) ] R F ( 1 E 3 + 1 R F ) [ ( 1 R C2 + 1 r π3 ) R C2 ( 1 R E3 + 1 R F ) ]+( 1 r π + g m3 ) [ 1 R F ( 1+[ ( 1 R C2 + 1 r π3 ) R C2 ( 1 R E3 + 1 R F ) ]+( 1 r π + g m3 ) ) ] ]

Conclusion:

Therefore, the expression for the loop gain is (gm1gm2RC2(1RE3+1RF)(1rπ3+gm3))(RC1||rπ2)[[1rπ+gm3+(1RE1+1RF)]RF(1E3+1RF)[(1RC2+1rπ3)RC2(1RE3+1RF)]+(1rπ+gm3)[1RF(1+[(1RC2+1rπ3)RC2(1RE3+1RF)]+(1rπ+gm3))]] .

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Explain with neat sketch of close loop (transfer function)
What are the advantages of positive feedback amplifier?
Use feedback theory to derive an expression for the input impedance of the “shunt-shunt” feedback amplifier as shown.

Chapter 12 Solutions

Microelectronics: Circuit Analysis and Design

Ch. 12 - Prob. 12.5TYUCh. 12 - Consider the noninverting op-amp circuit shown in...Ch. 12 - Design a feedback voltage amplifier to provide a...Ch. 12 - Prob. 12.6TYUCh. 12 - (a) Assume the transistor in the source-follower...Ch. 12 - Consider the common-base circuit in Figure...Ch. 12 - Design a feedback current amplifier to provide a...Ch. 12 - Prob. 12.8TYUCh. 12 - Prob. 12.9TYUCh. 12 - For the circuit in Figure 12.31, the transistor...Ch. 12 - Design a transconductance feedback amplifier with...Ch. 12 - Prob. 12.10TYUCh. 12 - Consider the circuit in Figure 12.39, with...Ch. 12 - Consider the BJT feedback circuit in Figure...Ch. 12 - Prob. 12.12TYUCh. 12 - Consider the circuit in Figure...Ch. 12 - Prob. 12.16EPCh. 12 - Prob. 12.17EPCh. 12 - Consider the circuit in Figure 12.44(a) with...Ch. 12 - Consider the circuit in Figure 12.16 with the...Ch. 12 - Prob. 12.18EPCh. 12 - Consider the loop gain function T(f)=(3000)(1+jf...Ch. 12 - Consider the loop gain function given in Exercise...Ch. 12 - Prob. 12.16TYUCh. 12 - Prob. 12.17TYUCh. 12 - Prob. 12.20EPCh. 12 - Prob. 12.21EPCh. 12 - Prob. 12.22EPCh. 12 - What are the two general types of feedback and...Ch. 12 - Prob. 2RQCh. 12 - Prob. 3RQCh. 12 - Prob. 4RQCh. 12 - Prob. 5RQCh. 12 - Prob. 6RQCh. 12 - Describe the series and shunt output connections...Ch. 12 - Describe the effect of a series or shunt input...Ch. 12 - Describe the effect of a series or shunt output...Ch. 12 - Consider a noninverting op-amp circuit. Describe...Ch. 12 - Prob. 11RQCh. 12 - What is the Nyquist stability criterion for a...Ch. 12 - Using Bode plots, describe the conditions of...Ch. 12 - Prob. 14RQCh. 12 - Prob. 15RQCh. 12 - Prob. 16RQCh. 12 - Prob. 17RQCh. 12 - (a) A negative-feedback amplifier has a...Ch. 12 - Prob. 12.2PCh. 12 - The ideal feedback transfer function is given by...Ch. 12 - Prob. 12.4PCh. 12 - Consider the feedback system shown in Figure 12.1...Ch. 12 - The open-loop gain of an amplifier is A=5104. If...Ch. 12 - Two feedback configurations are shown in Figures...Ch. 12 - Three voltage amplifiers are in cascade as shown...Ch. 12 - (a) The open-loop low-frequency voltage gain of an...Ch. 12 - (a) Determine the closed-loop bandwidth of a...Ch. 12 - (a) An inverting amplifier uses an op-amp with an...Ch. 12 - The basic amplifier in a feedback configuration...Ch. 12 - Consider the two feedback networks shown in...Ch. 12 - Prob. 12.14PCh. 12 - Two feedback configurations are shown in Figures...Ch. 12 - Prob. 12.16PCh. 12 - The parameters of the ideal series-shunt circuit...Ch. 12 - For the noninverting op-amp circuit in Figure...Ch. 12 - Consider the noninverting op-amp circuit in Figure...Ch. 12 - The circuit parameters of the ideal shunt-series...Ch. 12 - Consider the ideal shunt-series amplifier shown in...Ch. 12 - Consider the op-amp circuit in Figure P12.22. The...Ch. 12 - An op-amp circuit is shown in Figure P12.22. Its...Ch. 12 - Prob. 12.24PCh. 12 - Prob. 12.25PCh. 12 - Consider the circuit in Figure P12.26. The input...Ch. 12 - The circuit shown in Figure P12.26 has the same...Ch. 12 - The circuit parameters of the ideal shunt-shunt...Ch. 12 - Prob. 12.29PCh. 12 - Consider the current-to-voltage converter circuit...Ch. 12 - Prob. 12.31PCh. 12 - Determine the type of feedback configuration that...Ch. 12 - Prob. 12.33PCh. 12 - A compound transconductance amplifier is to be...Ch. 12 - The parameters of the op-amp in the circuit shown...Ch. 12 - Prob. 12.36PCh. 12 - Consider the series-shunt feedback circuit in...Ch. 12 - The circuit shown in Figure P12.38 is an ac...Ch. 12 - Prob. 12.39PCh. 12 - Prob. 12.40PCh. 12 - Prob. 12.41PCh. 12 - Prob. 12.42PCh. 12 - Prob. D12.43PCh. 12 - Prob. D12.44PCh. 12 - An op-amp current gain amplifier is shown in...Ch. 12 - Prob. 12.46PCh. 12 - Prob. 12.47PCh. 12 - Prob. 12.48PCh. 12 - The circuit in Figure P 12.49 has transistor...Ch. 12 - (a) Using the small-signal equivalent circuit in...Ch. 12 - The circuit in Figure P12.51 is an example of a...Ch. 12 - Prob. 12.52PCh. 12 - For the transistors in the circuit in Figure P...Ch. 12 - Consider the transconductance amplifier shown in...Ch. 12 - Consider the transconductance feedback amplifier...Ch. 12 - Prob. 12.57PCh. 12 - Prob. D12.58PCh. 12 - Prob. 12.59PCh. 12 - Prob. D12.60PCh. 12 - Prob. 12.61PCh. 12 - The transistor parameters for the circuit shown in...Ch. 12 - Prob. 12.63PCh. 12 - For the circuit in Figure P 12.64, the transistor...Ch. 12 - Prob. 12.65PCh. 12 - Prob. 12.66PCh. 12 - Design a feedback transresistance amplifier using...Ch. 12 - Prob. 12.68PCh. 12 - Prob. 12.69PCh. 12 - Prob. 12.70PCh. 12 - The transistor parameters for the circuit shown in...Ch. 12 - Prob. 12.72PCh. 12 - The open-loop voltage gain of an amplifier is...Ch. 12 - A loop gain function is given by T(f)=( 103)(1+jf...Ch. 12 - A three-pole feedback amplifier has a loop gain...Ch. 12 - A three-pole feedback amplifier has a loop gain...Ch. 12 - A feedback system has an amplifier with a...Ch. 12 - Prob. 12.78PCh. 12 - Prob. 12.79PCh. 12 - Consider a feedback amplifier for which the...Ch. 12 - Prob. 12.81PCh. 12 - A feedback amplifier has a low-frequency open-loop...Ch. 12 - Prob. 12.83PCh. 12 - A loop gain function is given by T(f)=500(1+jf 10...Ch. 12 - Prob. 12.85PCh. 12 - Prob. 12.86PCh. 12 - Prob. 12.87PCh. 12 - Prob. 12.88PCh. 12 - The amplifier described in Problem 12.82 is to be...Ch. 12 - Prob. 12.90PCh. 12 - Prob. 12.91CSPCh. 12 - Prob. 12.93CSPCh. 12 - Prob. 12.94CSPCh. 12 - Prob. D12.95DPCh. 12 - Op-amps with low-frequency open-loop gains of 5104...Ch. 12 - Prob. D12.97DP
Knowledge Booster
Background pattern image
Electrical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Text book image
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON
Text book image
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
Text book image
Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education
Text book image
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education
Text book image
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON
Text book image
Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,
02 - Sinusoidal AC Voltage Sources in Circuits, Part 1; Author: Math and Science;https://www.youtube.com/watch?v=8zMiIHVMfaw;License: Standard Youtube License