(a) Interpretation: The goniometer setting to observe the ka 1 lines for Fe (1.76 A 0 ), Se (0.992 A 0 ) and Ag (0.497 A 0 ) needs to be determined if the diffracting crystal is a topaz. Concept introduction: Bragg’s diffraction condition will be used for the calculation of goniometer setting. This formula is given as- n λ = 2 d sin θ Where, n = integer λ= wavelength d = interplanar distance of crystal θ= angle

BuyFind

Principles of Instrumental Analysis

7th Edition
Douglas A. Skoog + 2 others
Publisher: Cengage Learning
ISBN: 9781305577213
BuyFind

Principles of Instrumental Analysis

7th Edition
Douglas A. Skoog + 2 others
Publisher: Cengage Learning
ISBN: 9781305577213

Solutions

Chapter 12, Problem 12.9QAP
Interpretation Introduction

(a)

Interpretation:

The goniometer setting to observe the ka1 lines for Fe (1.76 A0 ), Se (0.992 A0 ) and Ag (0.497 A0 ) needs to be determined if the diffracting crystal is a topaz.

Concept introduction:

Bragg’s diffraction condition will be used for the calculation of goniometer setting. This formula is given as-

nλ=2dsinθ

Where,

n = integer

λ= wavelength

d = interplanar distance of crystal

θ= angle

Interpretation Introduction

(b)

Interpretation:

The goniometer setting to observe the ka1 lines for Fe (1.76 A0 ), Se (0.992 A0 ) and Ag (0.497 A0 ) needs to be determined if the diffracting crystal is LiF.

Concept introduction:

Bragg’s diffraction condition will be used for the calculation of goniometer setting. This formula is given as-

nλ=2dsinθ

Where,

n = integer

λ= wavelength

d = interplanar distance of crystal

θ= angle

Interpretation Introduction

(c)

Interpretation:

The goniometer setting to observe the ka1 lines for Fe (1.76 A0 ), Se (0.992 A0 ) and Ag (0.497 A0 ) needs to be determined if the diffracting crystal is NaCl.

Concept introduction:

Bragg’s diffraction condition will be used for the calculation of goniometer setting. This formula is given as-

nλ=2dsinθ

Where,

n = integer

λ= wavelength

d = interplanar distance of crystal

θ= angle

Want to see the full answer?

Check out a sample textbook solution.

Want to see this answer and more?

Experts are waiting 24/7 to provide step-by-step solutions in as fast as 30 minutes!*

*Response times may vary by subject and question complexity. Median response time is 34 minutes for paid subscribers and may be longer for promotional offers.